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Abstract

We study the suspension of operads, specifically in the∞-categories of spectra and
pointed spaces, arising in the literature in the context of Koszul duality. In the stable
case, we investigate a conjectured characterising property of operadic suspension posed
by Heuts–Land [HL24] and extend their positive result for the nonunital E𝑛-operads
to the E∞-operad. We also discuss an alternative approach, to characterise operadic
suspension in terms of invertibility with respect to the levelwise tensor product of oper-
ads. In the unstable case, we show that constructions of Arone–Kankaanrinta [AK14]
and Ching–Salvatore [CS22] of a ‘sphere operad’ produce equivalent operads by
point-set means. We briefly discuss to what extent the approaches for the stable case
could generalise to the unstable case.
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1 Introduction

This introduction is divided in four parts. The first two sections introduce two main

concepts that feature in this thesis, operads and spectra, for a reader with some background

in algebraic topology. The third outlines the research project and results, and describes the

structure of the thesis. The final section briefly describes some notational conventions used

throughout the thesis.

1.1 Operads and higher algebra

In this section, we give an introduction to the main object featuring in this thesis: operads.

We discuss their historical origins in the study of iterated loop spaces and present the ‘little

cubes operads’ constructed for this purpose. These operads are used to describe algebraic

structures which are associative or commutative only up to homotopy. Finally, we discuss

how∞-categories can be incorporated into the story, which are also designed to deal with

constructions that are defined up to homotopy.
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Historically, operads were introduced around 1970 by Boardman-Vogt [BV68; BV73]

and May [May72] to understand the structure of iterated loop spaces. Recall that for a

pointed space 𝑋, the 𝑘-fold loop space Ω𝑘𝑋 is the space of all pointed maps 𝑆𝑘 → 𝑋. Its
set of path components is the 𝑘th homotopy group of 𝑋, denoted 𝜋𝑘𝑋. The homotopy

groups of a pointed space inherit a group structure (which is abelian for 𝑘 > 1) from the

composition of loops in Ω𝑘𝑋. Thus, the algebraic structure on homotopy groups comes

from some sort of algebraic structure on loop spaces. However, composition of loops is not

associative on the nose, but only up to homotopy; and these homotopies are again structured

in some coherent way, again up to homotopy. It turns out that the homotopy-coherent

algebraic structure carried by iterated loop spaces is fully described by certain operads, the
little 𝑘-cubes operads E𝑘. In fact, under mild hypotheses, a pointed space admitting the

structure of an ‘algebra’ over such an operad has the homotopy type of an iterated loop

space.

A (topological) operad 𝐎 consists of a space 𝐎(𝑛) for every 𝑛 ⩾ 0, whose elements we

think of as ‘operations’ with 𝑛 inputs and one output. For all 𝑛 and 𝑘1,… , 𝑘𝑛, there is a
composition map

𝐎(𝑛) × 𝐎(𝑘1) ×⋯ ×𝐎(𝑘𝑛) → 𝐎(𝑘1 +⋯ + 𝑘𝑛),

sending an operation 𝑜 ∈ 𝐎(𝑛) and operations 𝑝𝑖 ∈ 𝐎(𝑘𝑖) to a composed operation

𝑜 ∘ (𝑝1,… , 𝑝𝑛)with 𝑘1+⋯+𝑘𝑛 inputs. Intuitively, one uses the output of the 𝑖th operation
𝑝𝑖 as the 𝑖th input of 𝑜. The composition map should be continuous, and it should satisfy

some associativity and permutation conditions (see e.g. [HM22]).

The idea is to interpret these abstract operations as actual 𝑛-ary operations 𝑋𝑛 → 𝑋
on a concrete space 𝑋, exhibiting 𝑋 as an ‘algebra’ over the operad 𝐎. To every operation

𝑜 ∈ 𝐎(𝑛), we associate a map 𝑋𝑛 → 𝑋, in such a way as to respect the structure of the

operad 𝐎; for instance, composition of operations in 𝐎 should correspond to composition

of functions.

One of the simplest operads is the commutative operad Com, which is given by the one-

point space Com(𝑛) ≔ ∗ for all 𝑛. An algebra over the commutative operad is a coherent

choice of a single 𝑛-ary operation𝑋𝑛 → 𝑋 on a space𝑋 for every 𝑛. The coherence encodes
that algebras over the commutative operad are precisely commutative topological monoids.

The next simplest operad is the associative operad Assoc whose 𝑛th term Assoc(𝑛) ≔ Σ𝑛
is the symmetric group on 𝑛 letters. Composition in the associative operad is given by

composing permutations in a certain natural way. Algebras over the associative operad are

precisely topological monoids (not necessarily commutative).

As we discussed above, the multiplication operation of a loop spaceΩ𝑋 is not associative

on the nose. The structure of the associative operad is thus too strict to describe its algebraic

structure. Amore ‘flexible’ ormore homotopical variant of the associative operad is the ‘little

intervals operad’ E1. This operad consists of spaces E1(𝑛) whose points represent a choice
of 𝑛 ‘little’ subintervals of the standard interval [0, 1]; the interiors of these subintervals
may not overlap. For instance, a point of E1(2) (a binary operation) consists of a choice
of two subintervals [𝑎1, 𝑏1], [𝑎2, 𝑏2] ⊆ [0, 1] such that (𝑎1, 𝑏1) ∩ (𝑎2, 𝑏2) = ∅. The space
E1(𝑛) can be topologised as a subspace of R2𝑛. The composition operation of the operad

E1 is defined by ‘shrinking little intervals into other little intervals’, as pictured in Figure 1.

The E1-operad naturally acts on loop spaces Ω𝑋: given 𝑛 little intervals [𝑎𝑖, 𝑏𝑖] and
𝑛 loops 𝑤𝑖 in 𝑋, we define a composed loop [0, 1] → 𝑋 that runs through 𝑤𝑖 on the
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𝑜 ∈ E1(2) 𝑝1 ∈ E1(1) 𝑝2 ∈ E1(2)

1 2 1 2 1

compose

1 23

Figure 1 Composition in the little intervals operad E1

little interval [𝑎𝑖, 𝑏𝑖] and stands still at the basepoint of 𝑋 outside the little intervals. The

requirement that the interiors of the little intervals do not overlap ensures that this compo-

sition is well-defined. This action of E1 on a loop spaceΩ𝑋 describes the associativity of

composition of loops: for three loops 𝑢, 𝑣, 𝑤 in 𝑋, the composites 𝑢(𝑣𝑤) and (𝑢𝑣)𝑤 are not

equal on the nose, but there is a path in the space E1(3) between the two parametrisations

1 2 3
and

1 2 3

of these composites, passing to a homotopy between the paths 𝑢(𝑣𝑤) and (𝑢𝑣)𝑤 under the

E1-action.

Themonoid structure on the fundamental group𝜋1𝑋 = 𝜋0(Ω𝑋) (that is, the associative
multiplication) is now a consequence of the algebraic structure of the E1-operad. In fact,

applying the path components functor 𝜋0 levelwise to E1, we obtain the associative operad

Assoc in the category of sets (since up to homotopy, only the order of the little intervals

matters, and choosing an order is just choosing a permutation). Thus, the E1-algebra

structure onΩ𝑋 gives an Assoc-algebra structure on 𝜋0(Ω𝑋), which is nothing more than

the structure of a monoid. (We also know that 𝜋1𝑋 is a group, i.e. that the multiplication

has inverses, but this information is not encoded by the E1-operad. Instead, we say that

Ω𝑋 is a grouplike E1-algebra.) In this sense, the E1-operad is a ‘homotopical variant’ of the

associative operad: its algebras are not strict topological monoids, but topological spaces

with a binary operation that is associative up to coherent homotopy.

More generally, one can define a ‘little 𝑘-cubes operad’ E𝑘 for any positive integer 𝑘.
For 𝑘 > 1, one replaces the interval of the E1-operad by the 𝑘-dimensional cube [0, 1]𝑘.
Where the E1-operad acts on all loop spaces, the E𝑘-operad acts on 𝑘-fold spacesΩ𝑘𝑋. The
commutativity of 𝜋𝑘𝑋 for 𝑘 > 1 (or the noncommutativity of 𝜋1𝑋) can now be seen as a

homotopical commutativity (or noncommutativity) of the E𝑘-operads themselves: in the

‘little squares operad’ E2 for instance, we can move two little squares around each other in

a continuous manner without them overlapping (see Figure 2), but we cannot make two

little intervals in the little intervals operad E1 swap places continuously.

There are natural inclusion maps E𝑘 ↪ E𝑘+1 which induce restriction maps between

the corresponding categories of algebras: any E𝑘+1-algebra is also naturally an E𝑘-algebra.

One can see the algebras of the E𝑘-operads as increasingly more commutative, moving

along the sequence

E1 ↪ E2 ↪ E3 ↪ … .
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Figure 2 Continuously interchanging two little squares, describing the commutativity of

the E2-operad

We can take this even further by taking the colimit of this sequence, by which we obtain

the E∞-operad. The algebras of the E∞-operad are highly commutative and possess a lot of

structure.

The result mentioned earlier, that the E𝑘-operad fully describes the algebraic structure

of 𝑘-fold loop spaces, can now be made more precise:

Theorem If a connected pointed space 𝑌 admits a grouplike algebra structure of the E𝑘-operad, then
it is weakly equivalent to a 𝑘-fold loop space Ω𝑘𝑋.

Iterated loop spaces are thus characterised up to homotopy by whether they admit a

(grouplike) action of the E𝑘-operad. This result is due to Boardman–Vogt [BV73] in the

case 𝑘 = 1 and to May [May72] for all 𝑘 ⩾ 1. A higher-categorical version can be found

in Lurie’s [DAG-VI, Theorem 1.3.6]. Passing to the colimit, the grouplike algebras of the

E∞-operad are precisely ‘infinite loop spaces’; this was proven in [BV68].

We have already seen above that the E1-operad is a ‘homotopical variant’ of the as-

sociative operad, at least at the level of algebras. The work of encoding the homotopical

coherence was in the construction of the operad, but encoding such coherence is also pre-

cisely the goal of∞-categories (more precisely, (∞,1)-categories); roughly, these are categories
where composition is defined only up to homotopy. Indeed, one can define operads (then

also called ‘∞-operads’) in the∞-category of spaces, and these operads fit together into

their own ∞-category. The study of ∞-operads and their algebras is known as ‘higher

algebra’. If one considers the associative operad and the E1-operad in this setting, it turns

out they are equivalent as objects of the ∞-category of operads: there is a map between

them which is invertible up to homotopy (this notion is the∞-categorical generalisation

of objects of 1-categories being isomorphic). Thus, for all homotopy-coherent purposes,

one need not distinguish these operads: that the binary operation of an associative algebra

in the∞-category of spaces is only associative up to homotopy is now already encoded by

the∞-categorical structure.

A similar story can be told for the E∞-operad: in the∞-categorical setting, it is equiva-

lent to the commutative operad. The situation can be summed up by the following diagram:

Assoc ≃ E1 ↪ E2 ↪ E3 ↪ … ↪ E∞ ≃ Com.

The E𝑘-algebras thus interpolate between associative and commutative algebras. At the

two ends of this sequence, the passage from 1-categories to∞-categories allows us to use

simpler constructions for the same purposes.

1.2 Spectra and stable homotopy theory

Another category that will prominently feature in this thesis is the∞-category Sp of spectra,
which is the foundation of stable homotopy theory. The fundamental motivation for stable
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homotopy theory is the Freudenthal suspension theorem, which says that for a pointed

space 𝑋 satisfying some assumptions, the sequence

𝜋𝑘𝑋 → 𝜋𝑘+1(Σ𝑋) → 𝜋𝑘+2(Σ2𝑋) → … → 𝜋𝑘+𝑛(Σ𝑛𝑋) → …

stabilises for sufficiently large 𝑛. In other words, the homotopy groups of 𝑋 stabilise after

suspending 𝑋 sufficiently many times. The colimit of the sequence is called the 𝑘th stable
homotopy group of 𝑋.

The space 𝑋 and its iterated suspensions give rise to a spectrum, which is a sequence of

pointed spaces 𝐸(𝑛) for all 𝑛 ⩾ 0, equipped with equivalences 𝐸(𝑛) ≃ Ω𝐸(𝑛 + 1); applying
the free infinite loop space functor to 𝑋 and its suspensions produces such a spectrum. The

stable homotopy groups of 𝑋 can then be seen as the homotopy groups of the resulting

suspension spectrum Σ∞𝑋. In particular, for the 0-sphere 𝑋 = 𝑆0, the suspension spectrum

S ≔ Σ∞𝑆0 is known as the sphere spectrum, and its homotopy groups are the stable homotopy

groups of spheres.

One way to think about the∞-category of spectra, which ties in to our earlier discussion

of the algebraic structure possessed by loop spaces, is as an ‘algebraic’ variant of the ∞-

category of spaces (following [HA, § 1.4, perspective (D)]). Given any spectrum 𝐸, the
space 𝐸(0) is equivalent to an 𝑛-fold loop spaceΩ𝑛𝐸(𝑛) for every 𝑛; in other words, it is
an infinite loop space. Therefore, it admits an action of the E∞-operad, or equivalently, it

is a commutative monoid in the∞-category Spc of spaces. In fact, there is an equivalence

between the full subcategory of connective spectra and the grouplike E∞-algebras in Spc

(see [HA, § 5.2.6]). This viewpoint allows us to think of spectra as ‘algebraic spaces’;

the relation between the∞-category of spectra and the∞-category of spaces is roughly

analogous to the relation between the category of abelian groups and the category of sets

(in the latter category, the grouplike commutative monoids are indeed precisely abelian

groups).

Another way to think of the ∞-category of spectra is as the stabilisation of the ∞-

category Spc∗ of pointed spaces. We refer to [HA, § 1.1.1] for the definition of stable

∞-categories, but for our current purposes it suffices to know the following about them.

A stable ∞-category is in particular pointed, which means it has a zero object 0 (i.e., an

object that is both initial and terminal). In a pointed ∞-category Cwith pullbacks and

pushouts, one can define the suspension and loop functors Σ ∶ C→ C andΩ ∶ C→ C:

the suspension of 𝑋 ∈ C is the pushout of the map 𝑋 → 0 along itself (dually, one defines

the loop functor via pullbacks). In general, there is an adjunction Σ ⊣ Ω, but in a stable

∞-category, these functors are moreover equivalences. Roughly, the∞-category of spectra

is characterised by the fact that it is universal among stable∞-categories equipped with a

forgetful functor Sp → Spc∗ (a precise statement is [HA, Corollary 1.4.2.23]).

1.3 Summary and outline

In this thesis, we study the operation of operadic suspension on the∞-category of operads,

specifically in pointed spaces or spectra. To an operad 𝐎, one can associate a ‘suspended’

operad 𝐬𝐎, whose algebras satisfy the following property: suspending the underlying object,

an 𝐬𝐎-algebra structure on an object 𝑋 induces an 𝐎-algebra structure on Σ𝑋. Moreover,

this assignment is an equivalence in the stable case on account of suspension being an

equivalence. The terms of the suspended operad 𝐬𝐎 are given by iterated suspensions

𝐬𝐎(𝑛) ≃ Σ𝑛−1𝐎
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of those of 𝐎, with appropriate Σ𝑛-actions and structure maps. Ching–Salvatore [CS22]

use operadic suspension in the setting of Koszul duality, and show that the Koszul dual
𝐾E𝑘 of the E𝑘-operad in spectra is equivalent to the 𝑘-fold desuspension 𝐬−𝑘E𝑘. In the

setting of higher algebra, operadic suspension is used by Heuts–Land [HL24] and Antolín-

Camerena–Brantner–Heuts [ABH25] to prove relations between different E𝑘-operads

and their algebras. Similar results had already been obtained in the 𝑅-linear case (for 𝑅 an

ordinary commutative ring) by Berger–Fresse [BF04] and by Fresse [Fre11].

The construction of operadic suspension naturally generalises from the 𝑅-linear case
to the stable case, that is, to operads in the ∞-category in spectra. In the unstable case,

however, the situation is more complicated. However, Arone–Kankaanrinta [AK14] and

Ching–Salvatore [CS22] construct so-called ‘sphere operads’ 𝐒 in the category of pointed

spaces, with 𝐒(𝑛) ≃ 𝑆𝑛−1. Using such a sphere operad, one can define operadic suspension of

operads in pointed spaces by levelwise smashing with 𝐒. Applying the suspension spectrum

functor levelwise then recovers the operadic suspension in the stable case; in particular, the

two models are stably equivalent.
The constructions of Arone–Kankaanrinta and Ching–Salvatore are not isomorphic as

topological operads: the terms of the former sphere operad are homeomorphic to spheres,

but those of the latter are only homotopy equivalent to spheres. Given the existence

of multiple different constructions of sphere operads and their corresponding operadic

suspension, it would be desirable to characterise these operads by universal properties. One

would then obtain a comparison between the different constructions by showing that both

models satisfy the universal properties.

The goal of this research project is to characterise operadic suspension, taking up a

question posed by Heuts–Land in [HL24, § 3.5].

We start with the stable case, which is in many aspects simpler, essentially due to the

fact that the suspension and loop functors are equivalences. We discuss two approaches to

a characterisation of stable operadic suspension. The first approach, suggested by Heuts–

Land, is phrased in terms of a property of a suspension morphism 𝜎 ∶ 𝐎 → 𝐬𝐎; a similar

approach is employed by Fresse [Fre11] in the linear case. We extend the result that the

E𝑘-operads (for finite 𝑘) satisfy this property, as established by Heuts–Land, to the E∞-

operad in Proposition 3.5. We discuss to what extent the proposed property characterises

operadic suspension, and we discuss additional assumptions one can impose to determine

the suspension morphism up to equivalence (see Proposition 3.9).

The second approach is to characterise operadic suspension in spectra via invertibility

with respect to the levelwise tensor product. An object 𝑋 of a symmetric monoidal ∞-

category is invertible if there is an object 𝑌 such that 𝑋 ⊗ 𝑌 is equivalent to the monoidal

unit. For the∞-category of nonunital operads in spectra, we conjecture in Conjecture 3.14

that the invertible objects are precisely the suspensions of the E∞-operad (the monoidal

unit):

Conjecture A nonunital operad in the symmetric monoidal ∞-category of spectra is invertible with
respect to the levelwise tensor product if and only if it is equivalent to a suspension 𝐬𝑑E∞ of the
E∞-operad for some 𝑑 ∈ Z.

This statement is analogous to the category of spectra itself, where the invertible objects

are precisely the suspensions S𝑑 = Σ𝑑S of the sphere spectrum.We discuss how the condition

of invertibility for operads relates to a weaker condition, which is easier to check in practice:
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we say an operad 𝐎 is quasi-invertible if the terms 𝐎(𝑛) are invertible for all 𝑛 and if all

partial composition maps are equivalences. In Proposition 3.18, we prove that invertible

operads are quasi-invertible, and we expect the converse to be true as well. We reduce

the conjecture about the Picard group to a characterisation of the nonunital E∞-operad as

the essentially unique operad structure on its underlying symmetric sequence with partial

composition maps being equivalences (see Remark 3.21).

In the unstable case, we discuss the constructions of Arone–Kankaanrinta and Ching–

Salvatore of a sphere operad, and prove in Theorem 4.5 by point-set means that these are

equivalent:

Theorem The sphere operads of Arone–Kankaanrinta and Ching–Salvatore are weakly equivalent.

Finally, we discuss to what extent the approaches for a characterisation of operadic

suspension in the stable case generalise to the unstable case.

Outline In § 2, we define the∞-category of operads in a symmetric monoidal∞-category.

We discuss the monad associated to an operad and define the∞-category of algebras over

an operad as the category of algebras over this monad. We also present some examples of

operads, notably the E𝑛-operads and the E∞-operad.

In § 3, we define operadic suspension in the stable case. We then study the two ap-

proaches to a characterisation of operadic suspension, via the suspension morphism in § 3.2

and via invertibility in § 3.3.

In § 4, we indicate how to define operadic suspension unstably via a sphere operad. We

prove in § 4.1 that the constructions of a sphere operad of [AK14] and [CS22] are equivalent.

In § 4.2 we discuss the suitability of the approaches for stable operadic suspension in the

unstable case.

1.4 Conventions

Throughout, we work in the setting of∞-categories as developed by Lurie [HTT; HA],

and we do not notationally distinguish a 1-category and its nerve. Our use of the prefix

‘∞-’ is not consistent, and the word ‘category’ in general refers to an ∞-category. We

implicitly use quasicategories as our model for∞-categories; except for references to the

literature, however, we will not have to depend on their specific characteristics. For the

theory of∞-categories and (symmetric) monoidal∞-categories, we refer to [HTT; HA].

We write:

• Spc for the∞-category of spaces of [HTT, Definition 1.2.16.1]. The∞-category of

spaces is characterised by the fact that it is the free cocomplete∞-category generated

by a single object, the one-point space (see [HTT, Theorem 5.1.5.6]). It is equipped

with the cartesian symmetric monoidal structure.

• Spc∗ for the ∞-category of pointed spaces. The smash product ∧ equips the ∞-

category of pointed spaces with a symmetric monoidal structure, which is essentially

uniquely determined by the requirements that the monoidal product preserves colim-

its in each variable separately and that the 0-sphere 𝑆0 is the monoidal unit (see [HA,

Remark 4.8.2.14]).
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• Sp for the∞-category of spectra. This category is characterised by the fact that it is

the free stable and cocomplete∞-category generated by a single object, the sphere

spectrum S (see [HA, Corollary 1.4.4.6]) The smash product ⊗ of spectra equips

Sp with a symmetric monoidal structure, which is essentially uniquely determined

by the requirements that the monoidal product preserves colimits in each variable

separately and that the sphere spectrum is the monoidal unit (see [HA, Corollary

4.8.2.19]).
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2 Operads

In this section, we present a definition of the∞-category of operads in a symmetricmonoidal

∞-category, also called ‘enriched∞-operads’ in the literature. Enriched∞-operads are a

generalisation of (unenriched)∞-operads, which can then be seen as∞-operads enriched

in the cartesian symmetric monoidal∞-category of spaces. There are multiple models of

∞-operads in the literature; first and best developed are the∞-operads of Lurie [HA], but

there are also the dendroidal sets of Moerdijk–Weiss [MW07], the dendroidal Segal spaces

of Cisinski–Moerdijk [CM13] and the complete Segal operads of Barwick [Bar18]. All

these models of∞-operads are equivalent by results of [HHM16; Bar18; CHH18].

The development of models for enriched∞-operads is more recent. Following [HL24]

and [ABH25], we define operads as algebras in the category of symmetric sequences with

respect to the monoidal structure given by the composition product. This generalises the

well-known definition of operads in symmetric monoidal 1-categories via symmetric se-

quences due to Kelly [Kel05]. In the ∞-categorical setting, the composition product is

constructed from universal properties by Brantner–Campos–Nuiten [BCN24], following

the 1-categorical argument due to Carboni and presented by Kelly [Kel05] and Trim-

ble [Tri]. Haugseng [Hau22] defines enriched∞-operads via the composition product by a

different method. There are other approaches to defining enriched∞-operads, such as the

approach of Chu–Haugseng [CH20] based on Barwick’s complete Segal operads definition

of ‘unenriched’∞-operads; a comparison between this model and the model via symmetric

sequences of [BCN24] is currently not available in the literature.

For the discussion of the∞-category of operads, we follow [Bra17, § 4.1.2], [BCN24,

§ 3.1], and [ABH25, § 2]. Throughout, we will let C denote a presentable symmetric

monoidal ∞-category (which is thus in particular complete and cocomplete), and we

assume that the tensor product commutes with colimits in both variables separately. We

write ⊗ for the tensor product of C and 𝟙 for the monoidal unit. In particular, Cmight be

the symmetric monoidal∞-category of pointed spaces or spectra, the derived category of a

ring, or a symmetric monoidal 1-category satisfying the same assumptions. The assumption

that the tensor product commutes with colimits is satisfied in particular if the monoidal
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structure is closed, i.e., if the functor 𝑋 ⊗− ∶ C→ Chas a right adjoint for every object 𝑋.
At the end of the section, we give some examples of∞-operads, most importantly the

E∞-operad and the E𝑛-operads, which will play an important role in the next section.

Symmetric sequences We write Fin≃ for the groupoid of finite sets and bijections.

Definition 2.1 Let Cbe an∞-category. The∞-category of symmetric sequences in C is the

functor category

SSeq(C) ≔ Fun(Fin≃, C).

For a symmetric sequence𝐴 in C, we write𝐴(𝑛) for the value of𝐴 on a set with 𝑛 elements.

Functoriality equips the object 𝐴(𝑛) of Cwith an action of the symmetric group Σ𝑛.

There is a natural inclusion 𝜄 ∶ C↪ SSeq(C) sending an object 𝑋 to the symmetric

sequence concentrated in level zero with value 𝑋.

Day convolution The monoidal structure on Fin≃ given by disjoint union induces the

symmetric monoidal structure of Day convolution on the category of symmetric sequences

(cf. [HA, Corollary 4.8.1.12]). It is given by

(𝐴 ⊗ 𝐵)(𝑛) = ⨁
𝑎+𝑏=𝑛

(Σ𝑛 ⊗ 𝐴(𝑎) ⊗ 𝐵(𝑏))ℎ(Σ𝑎×Σ𝑏),

where Σ𝑛 denotes the Σ𝑛-induction of the monoidal unit 𝟙, and where Σ𝑎 × Σ𝑏 ↪ Σ𝑛
denotes the obvious subgroup.

The inclusion 𝜄 ∶ C ↪ SSeq(C) is symmetric monoidal for the Day convolution

product, providing a tensoring of SSeq(C) over C.

Composition product Another monoidal structure on the ∞-category of symmetric se-

quences is the composition product, constructed in [BCN24, § 3.1]. For symmetric sequences

𝐴 and 𝐵, it is given by
𝐴 ∘ 𝐵 = ⨁

𝑛⩾0
(𝐴(𝑛) ⊗ 𝐵⊗𝑛)ℎΣ𝑛

,

where 𝐵⊗𝑛 is equipped with a Σ𝑛-action by permutation of the tensor product factors.

The monoidal unit with respect to the composition product is the symmetric sequence

concentrated in degree one with value 𝟙. The composition product preserves all colimits

on the left and it preserves sifted colimits and finite sifted limits on the right [BCN24,

Remark 3.5].

For a symmetric sequence 𝐴, the restriction C → SSeq(C), 𝑋 ↦ 𝐴 ∘ 𝜄(𝑋) of the
composition product along 𝜄 on the right takes values in the essential image of 𝜄. Indeed,
since 𝜄 is symmetric monoidal with respect to Day convolution, we have 𝜄(𝑋)⊗𝑛 ≃ 𝜄(𝑋⊗𝑛)
for any object𝑋 of C, so it follows from the formulas that𝐴∘ 𝜄(𝑋) is concentrated in degree
zero. Thus, the restriction factors through 𝜄 via an endofunctor free𝐴 on C, given by

free𝐴(𝑋) = ⨁
𝑛⩾0

(𝐴(𝑛) ⊗ 𝑋⊗𝑛)ℎΣ𝑛
,

and this defines a monoidal functor free ∶ SSeq(C) → End(C) to the monoidal category

of endofunctors under composition, since it is the restriction of the composition product to

the essential image of 𝜄.
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Definition 2.2 The∞-category of operads in C is defined to be the∞-category

Opd(C) ≔ Alg(SSeq(C))

of algebra objects in the monoidal∞-category (SSeq(C), ∘).

Remark 2.3 If 𝐎 is a symmetric sequence in a symmetric monoidal 1-category, then an

algebra structure on 𝐎 with respect to the composition product consists of a multiplication

map𝐎∘𝐎 → 𝐎 and a unit 𝟙 → 𝐎 (together with some commutative diagrams). Expanding

the formulas, we see that

(𝐎 ∘ 𝐎)(𝑘) ≃ ∐
𝑛⩾0

𝐎(𝑛) ⊗Σ𝑛
( ∐
𝑘1+⋯+𝑘𝑛=𝑘

(Σ𝑘 ⊗ 𝐎(𝑘1) ⊗… ⊗𝐎(𝑘𝑛))Σ𝑘1×⋯×Σ𝑘𝑛
),

and a map of symmetric sequences 𝐎 ∘ 𝐎 → 𝐎 consists precisely of equivariant maps

𝐎(𝑛) ⊗ 𝐎(𝑘1) ⊗… ⊗𝐎(𝑘𝑛) → 𝐎(𝑘1 +⋯ + 𝑘𝑛)

specifying the usual operadic composition maps. Thus, the above definition recovers the

usual 1-category of operads for symmetric monoidal 1-categories.

As in the 1-categorical case, an operad 𝐎 in a symmetric monoidal∞-category comes

equipped with composition maps

∘ ∶ 𝐎(𝑛) ⊗ 𝐎(𝑘1) ⊗… ⊗𝐎(𝑘𝑛) → 𝐎(𝑘1 +⋯ + 𝑘𝑛).

These satisfy equivariance and compatibility conditions, but expressed by a large amount

of coherence data. For 1 ⩽ 𝑖 ⩽ 𝑛, we denote the 𝑖th partial composition map of an operad

𝐎 by

∘𝑖 ∶ 𝐎(𝑛) ⊗ 𝐎(𝑘) → 𝐎(𝑛 + 𝑘 − 1).

Remark 2.4 In what follows, all operads𝐎 are assumed to be nonunital: they satisfy𝐎(0) = ∗.
Correspondingly, we writeOpd(C) for the category of nonunital operads. When we want

to be explicit, we also writeOpd
nu(C) to stress nonunitality.

Associated monads Recall that the ∞-category of algebra objects in the monoidal ∞-

category (End(C), ∘) of endofunctors under composition is the ∞-category Mnd(C) of
monads on C. The monoidal functor free ∶ SSeq(C) → End(C) thus induces a functor
free ∶ Opd(C) → Mnd(C) commuting with the forgetful functors as in the diagram

Opd(C) Mnd(C)

SSeq(C) End(C)

free

fgt fgt

free

For an operad 𝐎, we call free𝐎 the associated monad of 𝐎. If 𝐎 is a nonunital operad, its

associated monad is a reduced functor, that is, it satisfies free𝐎(∗) ≃ ∗.
We define the category of algebras over an operad 𝐎 as the category of algebras over

the associated monad free𝐎.

Definition 2.5 For an operad 𝐎 in C, the ∞-category Alg𝐎(C) of 𝐎-algebras is the ∞-

category of algebras over the associated monad free𝐎:

Alg𝐎(C) ≔ Alg
free𝐎

(C).
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Levelwise tensor product The third monoidal structure on SSeq(C) that we consider is the
levelwise tensor product ⊗lev given by

(𝐴 ⊗lev 𝐵)(𝑛) ≔ 𝐴(𝑛) ⊗ 𝐵(𝑛).

We will use the levelwise tensor product in § 3 to define operadic suspension. It is shown

in [BCN24, Proposition 3.9] that the functor ⊗lev ∶ SSeq(C) × SSeq(C) → SSeq(C) has
a lax monoidal structure with respect to the composition product, so it induces a functor

⊗lev ∶ Opd(C) ×Opd(C) → Opd(C) at the level of operads; in particular, for operads 𝐎
and 𝐏, the levelwise tensor product 𝐎 ⊗lev 𝐏 is also an operad. Correspondingly, there is a

natural functor

Alg𝐎(C) × Alg𝐏(C) → Alg𝐎⊗lev𝐏
(C), (𝐴, 𝐵) ↦ 𝐴 ⊗ 𝐵. (1)

Associatedmonads and colimits In our discussion of operadic suspension in the next sections,

we will need a result about the preservation of colimits by the functor free ∶ Opd(C) →
Mnd(C), which we briefly discuss here. This functor is induced by a monoidal functor

from symmetric sequences in C to endofunctors on C. For any symmetric sequence 𝐴,
the endofunctor free𝐴 ∈ End(C) is given by colimits and tensor powers, both of which

preserve sifted colimits (see [HTT, Proposition 5.5.8.6] for the latter), so it preserves sifted

colimits. Moreover, by the same observation and since colimits are computed levelwise in

SSeq(C) and End(C) (they are functor categories with domains Fin≃ and C), the functor

free ∶ SSeq(C) → End(C) preserves sifted colimits. We will need the following lift of this

result to the level of categories of algebras.

Lemma 2.6 The functor free ∶ Opd(C) → Mnd(C) preserves sifted colimits.

We will apply this result to the associated monad of the E∞-operad, which is a sifted

(and a fortiori filtered) colimit of the E𝑛-operads, in the proof of Proposition 3.5.

Remark 2.7 In the proof of [Heu24, Theorem 5.2], it is shown that free ∶ Opd(C) →
Mnd(C) preserves all colimits, after first showing it preserves sifted colimits, which is more

straightforward. Sifted colimits suffice for our current purposes, so we only discuss this

argument.

Proof (of Lemma 2.6) Write End
Σ(C) for the full monoidal subcategory of End(C) spanned

by the functors that preserve sifted colimits, and write Mnd
Σ(C) for the corresponding

category of monads, which contains the essential image of free ∶ Opd(C) → Mnd(C). In
the commutative square

Opd(C) Mnd
Σ(C)

SSeq(C) End
Σ(C)

fgt

free

fgt

free

the vertical forgetful functors create sifted colimits by [HA, Proposition 3.2.3.1] and the

bottom horizontal functor preserves them, implying the desired conclusion.

Examples of operads In this section, we briefly describe some examples of operads, specifi-

cally the commutative and associative operads, the E𝑛-operads for finite 𝑛, and the E∞-

operad. We will discuss these operads in the fundamental case of the cartesian symmetric
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monoidal∞-category Spc of spaces, as this will automatically extend to other symmetric

monoidal∞-categories by the following reasons.

First, the ∞-category of spaces is ‘freely generated under colimits by the one-point

space’: for any presentable ∞-category C, evaluating at the one-point space induces an

equivalence

Fun𝐿(Spc, C) ≃−→ C

between the ∞-category of colimit-preserving functors Spc → C and C (see [HTT,

Theorem 5.1.5.6 and Corollary 5.5.2.9]). In other words, a colimit-preserving functor

Spc → C is determined by its value on the one-point space, and conversely, any object

𝑋 ∈ C gives rise to a colimit-preserving functor sending the one-point space to 𝑋.
Second, we can upgrade this result to the context of symmetric monoidal∞-categories.

The cartesian symmetric monoidal structure is the essentially unique symmetric monoidal

structure on the∞-category of spaces with the one-point space as monoidal unit and such

that the monoidal product preserves colimits in each variable separately (see [HA, Corol-

lary 4.8.1.12]). Let (C, ⊗,𝟙) be a presentable symmetric monoidal∞-category and assume

the tensor product preserves colimits in each variable separately. Using the equivalence

above, a colimit-preserving symmetric monoidal functor Spc → C is determined by its

value at the one-point space, which is the monoidal unit of Spc and must thus be sent to

the monoidal unit 𝟙 of C. Conversely, sending the one-point space to 𝟙 defines a colimit-

preserving symmetric monoidal functor, and this is thus the essentially unique such functor.

This functor induces a colimit-preserving monoidal functor SSeq(Spc) → SSeq(C) at the
level of symmetric sequences, which in turn induces a functor Opd(Spc) → Opd(C) at
the level of operads. Using this functor, we can pass operads in spaces to other symmetric

monoidal∞-categories.

Analogous properties hold for the symmetric monoidal∞-category Spc∗ of pointed

spaces with smash product and monoidal unit the 0-sphere 𝑆0, and for the symmetric

monoidal ∞-category Sp of spectra with smash product and monoidal unit the sphere

spectrum S, if one assumes moreover that C is respectively pointed or stable (see [HA,

Proposition 4.8.2.11 and Corollary 4.8.2.19]).

Particular examples to keep in mind of such symmetric monoidal functors as described

abstractly above are the functor (−)+ ∶ Spc → Spc∗ adding a disjoint basepoint, the sus-

pension spectrum functor Σ∞ ∶ Spc∗ → Sp, and their composition Σ∞
+ ∶ Spc → Sp. We

generally suppress these essentially unique functors in the notation; for instance,E∞ denotes

both the E∞-operad in spaces and the E∞-operad Σ∞
+ E∞ in spectra.

We are now ready to discuss some examples of operads in spaces. Our discussion is

rather informal: rather than giving definitions, we describe important properties of these

operads. We refer to [HA] for a formal account, albeit using a different model. Recall that

all our operads are nonunital (Remark 2.4).

Example 2.8 The commutative operad Com has the one-point space Com(𝑛) ≔ ∗ in all levels
𝑛 ⩾ 1. The composition maps of Com are all equivalent to the identity of the one-point

space (which is indeed the only endomorphism).

Example 2.9 The associative operad Assoc is defined by Assoc(𝑛) ≔ Σ𝑛, the symmetric group

on 𝑛 letters, in each level 𝑛 ⩾ 1. Equivalently, for a finite set 𝐼, Assoc(𝐼) can be described
as the set of linear orders on 𝐼. There is a natural Σ𝑛-action on Assoc(𝑛), and composition

is given by composition of permutations (see for instance [HM22, Example 1.5(b)] for a
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description of the combinatorics).

Example 2.10 For every 𝑘 ⩾ 1, E𝑘 denotes the little 𝑘-cubes operad. The essential features
of the E𝑘-operads are already present in the case of topological operads (that is, in the

1-category of topological spaces), which we discuss here; the∞-operad E𝑘 is defined by

Lurie in [HA, § 5.1]. Let 𝐼𝑘 = [0, 1]𝑘 denote the unit 𝑘-dimensional cube. A continuous

map 𝐼𝑘 → 𝐼𝑘 is a rectilinear embedding if it is of the form

(𝑥1,… , 𝑥𝑘) ↦ (𝑡1𝑥1 + 𝑎1,… , 𝑡𝑘𝑥𝑘 + 𝑎𝑘)

for some 𝑡𝑖 > 0 and 𝑎𝑖. Specifying a rectilinear embedding 𝑐 ∶ 𝐼𝑘 → 𝐼𝑘 is equivalently
specifying a ‘little cube’ [𝑎1, 𝑏1] ×⋯ × [𝑎𝑘, 𝑏𝑘] ⊆ [0, 1]𝑘. We define the space E𝑘(𝑛) as the
subspace of Map(∐𝑛

𝑖=1 𝐼
𝑘, 𝐼𝑘) of those maps that are of the form 𝑐1 ⨿ … ⨿ 𝑐𝑛 such that

each 𝑐𝑖 is a rectilinear embedding and the images of the 𝑐𝑖 on the interior (0, 1)𝑘 of 𝐼𝑘 do
not overlap. The symmetric group Σ𝑛 acts on E𝑘(𝑛) by permutation of the ‘little cubes’ 𝑐𝑖.
Composition in E𝑘 is given by composition of functions.

Example 2.11 Any little 𝑘-cube [𝑎1, 𝑏1]×⋯×[𝑎𝑘, 𝑏𝑘] ⊆ [0, 1]𝑘 gives rise to a little (𝑘+1)-cube
by adding the entire interval [𝑎𝑘+1, 𝑏𝑘+1] ≔ [0, 1] in the next dimension. This procedure

induces an inclusion of operads E𝑘 ↪ E𝑘+1. The E∞-operad is defined as the colimit of the

sequence

E1 ↪ E2 ↪ E3 ↪ … .

It turns out that the spaces E∞(𝑛) are contractible for all 𝑛 ⩾ 1. Correspondingly,
the E∞-operad is homotopy equivalent to the commutative operad Com, which has the

same property. Thus, in the∞-category of operads in the∞-category of spaces, there is

an equivalence Com ≃ E∞. Similarly, one can see that the E1-operad is equivalent to the

associative operad Assoc.

Notation 2.12 In light of the equivalences Com ≃ E∞ and Assoc ≃ E1, we consistently

writeE∞ for the commutative operad andE1 for the associative operad in the∞-categorical

setting.

3 Stable operadic suspension

In this section, we discuss operadic suspension in symmetric monoidal ∞-categories C

that are stable, and in particular in the category Sp of spectra. We first define the operadic
suspension of the E∞-operad in C as the endomorphism operad 𝐬E∞ ≔ End(S−1) of the
desuspended monoidal unit S. For a general operad 𝐎 in C, we simply define the operadic

suspension of 𝐎 to be the levelwise tensor product 𝐬𝐎 ≔ 𝐎 ⊗lev 𝐬E∞. The associated

monads of 𝐎 and its suspension 𝐬𝐎 satisfy

free𝐬𝐎 ≃ Σ−1free𝐎Σ,

and it follows that there is an equivalence between 𝐬𝐎-algebra structures on an object

𝑋 ∈ C and 𝐎-algebra structures on its suspension Σ𝑋 (cf. [HL24, § 3.1]).

Our goal is to characterise operadic suspension by a universal property. We discuss two

potential approaches to such a characterisation.
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First, we discuss the approach via a suspension morphism 𝜎 ∶ 𝐎 → 𝐬𝐎. At the level of

monads, there is a natural construction of a map 𝑇 → Σ−1𝑇Σ, providing in particular a

map

free𝐎 → Σ−1free𝐎Σ ≃ free𝐬𝐎

between the monads associated to 𝐎 and its suspension 𝐬𝐎. We investigate a conjecture

of Heuts–Land [HL24, § 3.5], saying that this map of monads should arise from a map

𝐎 → 𝐬𝐎 of operads. We show that the positive answer to this question of ibid. in the case
of the E𝑛-operads extends to a positive result for the E∞-operad. The proof boils down to

showing that all constructions involved commute with sifted colimits, and applying this to

the sifted colimitE∞ ≃ colim𝑛E𝑛. We discuss two additional properties one could demand

the suspension morphism to satisfy, and show that imposing these determine suspension up

to equivalence.

Second, we observe that the operad 𝐬E∞ in spectra is invertible with respect to the

levelwise tensor product: it follows from the equivalence S1⊗S−1 ≃ S that the ‘desuspended
E∞-operad’ 𝐬−1E∞ ≔ End(S1) is inverse to 𝐬E∞, in the sense that there is an equivalence

𝐬E∞ ⊗lev 𝐬−1E∞ ≃ E∞

to the monoidal unit. Writing 𝐬𝑑E∞ for the 𝑑-fold suspension (or −𝑑-fold desuspension if

𝑑 is negative) of E∞, we conjecture that every nonunital operad in spectra that is invertible

with respect to the levelwise tensor product is equivalent to 𝐬𝑑E∞ for some 𝑑 ∈ Z. Further,
we discuss a weaker condition that we call ‘quasi-invertibility’ and that is easier to check in

practice; we investigate the relation between invertibility and quasi-invertibility.

Remark 3.1 The notion of operadic suspension has already been studied in the context of

Koszul duality in the linear case, in the category of chain complexes over an ordinary

commutative ring 𝑅, for instance by Berger–Fresse [BF04] and by Fresse [Fre11], using

point-set models; see also [LV12, § 7.2.2]. One similarly defines operadic suspension in

this case by tensoring with the endomorphism operad End(𝑅[−1]) of the desuspension of
the monoidal unit 𝑅[0] (however, the cited sources flip the suspension sign and call this
desuspension). In the epilogue of [Fre11], Fresse shows that the suspension morphism in the

𝑅-linear case agrees with the action of E∞ on reduced spherical cochains of 𝑆1, as is the

case for the suspension morphism we discuss in Definition 3.3 (see [ABH25]).

3.1 Operadic suspension

We start with a definition of operadic suspension in the stable case.

Let Cbe a presentable, closed symmetric monoidal∞-category. Moreover, we assume

Cto be stable in this section and we denote the monoidal unit by S; for the 𝑛-fold suspension
of S (where 𝑛 ∈ Z), we write S𝑛 ≔ Σ𝑛S. The right adjoint of 𝑋 ⊗ − ∶ C→ C is denoted

map(𝑋, −) for every 𝑋 ∈ C.

Definition 3.2 The operadic suspension of the E∞-operad in C is the endomorphism operad

𝐬E∞ ≔ End(S−1)

of the desuspension of S. The operadic suspension functor is defined by

𝐬 ≔ 𝐬E∞ ⊗lev − ∶ Opd(C) → Opd(C).

In particular, the operadic suspension of an operad 𝐎 in C is 𝐬𝐎 = 𝐬E∞ ⊗lev 𝐎.
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Explicitly, the underlying symmetric sequence of 𝐬E∞ is given by

𝐬E∞(𝑛) = map(S−𝑛, S−1) ≃ S𝑛−1 ≃ Σ−1(S1)⊗𝑛

where Σ𝑛 acts by permutation of the S1 factors. Alternatively, 𝐬E∞(𝑛) can be described as

the representation sphere S𝜌𝑛, the suspension spectrum of 𝑆𝜌𝑛 which we define in § 4.1; see

also [HL24, Remark 3.2].

The monad associated to the suspended operad 𝐬𝐎 satisfies

free𝐬𝐎 ≃ Σ−1free𝐎Σ,

and thus there is a commutative diagram

Alg𝐬𝐎(C) Alg𝐎(C)

C C

≃

fgt fgt

Σ
≃

providing an equivalence between 𝐬𝐎-algebra structures on 𝑋 and𝐎-algebra structures on

Σ𝑋.
Note that the object S−1 is invertible: tensoring it with S1 results in the monoidal unit S.

It follows that the operad 𝐬E∞ is invertible with respect to the levelwise tensor product, and

its inverse is 𝐬−1E∞ ≔ End(S1). (We will pursue this property further in § 3.3.) Tensoring

with 𝐬−1E∞ provides an operadic desuspension 𝐬−1 onOpd(C), which is inverse to suspension.
The functor of (1) then gives an equivalence

S−1 ⊗ − ∶ Alg𝐎(C)
≃−→ Alg𝐬𝐎(C), (2)

where S−1 is equipped with the canonical 𝐬E∞-algebra structure (given by the identity

𝐬E∞ → End(S−1)), with inverse given by tensoring with S1 ∈ Alg𝐬−1E∞
(C).

3.2 The suspension morphism

In this section, we discuss one approach to characterising operadic suspension in the stable

case: via the suspension morphism, as suggested by Heuts–Land [HL24, § 3.5]. The idea is

to focus on the equivalence of monads free𝐬𝐎 ≃ Σ−1free𝐎Σ associated to an operad𝐎. For a

general (reduced) monad 𝑇 on a stable category C, conjugating with the suspension functor

on Cgives a monad Σ−1𝑇Σ on C, and there is a natural suspension morphism 𝑇 → Σ−1𝑇Σ
between these monads. Specialising to the case that 𝑇 is the monad free𝐎 associated to an

operad, one thus obtains a map

free𝐎 → Σ−1free𝐎Σ ≃ free𝐬𝐎.

Although the functor free ∶ Opd(C) → Mnd(C) is not fully faithful in general, the map

of monads free𝐎 → free𝐬𝐎 should come from a map of operads 𝐎 → 𝐬𝐎. Indeed, there

is a natural construction of a map E∞ → 𝐬E∞, and tensoring with this map defines a

suspension morphism 𝐎 → 𝐬𝐎 at the level of operads (this is [ABH25, Definition 2.4]). One

might expect that this suspension morphism of operads should induce the corresponding

suspension morphism of monads.
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In the specific case of the E𝑛-operads (for finite 𝑛), Heuts–Land construct a sus-

pension morphism E𝑛 → 𝐬E𝑛 with this property; it is shown by Antolín-Camarena–

Brantner–Heuts [ABH25] that this construction is equivalent to theirs, providing a positive

answer for the E𝑛-operads to the question as phrased above.

We show that all constructions involved preserve sifted colimits to conclude that

also the E∞-operad satisfies this property. The E∞-operad, being the monoidal unit with

respect to the levelwise tensor product, should be in some way fundamental in this story.

The question is still open, however, whether one can extend the positive result for the

E∞-operad to all operads (see Remark 3.7).

The question is also still open to what extent this property characterises operadic

suspension. We conclude the section by showing that a natural suspension morphism

satisfying this property for the E𝑛-operads and some additional properties is essentially

unique. Informally, these properties are (1) that the suspension morphism is natural and

determined by what it does to the E∞-operad; (2) that the underlying symmetric sequence

of 𝐬E∞ consists of representation spheres S𝜌𝑛 .

Suspension morphism for monads Let 𝑇 be a reduced monad on C, that is, satisfying

𝑇(0) ≃ 0. Then the underlying object of the free 𝑇-algebra on the zero object of C is

fgt𝑇free𝑇(0) = 𝑇(0) ≃ 0, and free𝑇(0) is the zero object of the ∞-category Alg𝑇(C) of
𝑇-algebras. The loop functorΩ𝑇 on Alg𝑇(C), defined on a 𝑇-algebra 𝑋 as the pullback of

free𝑇(0) → 𝑋 along itself, then satisfies

fgt𝑇Ω𝑇 ≃ Ωfgt𝑇 ∶ Alg𝑇(C) → C,

since the right adjoint fgt𝑇 preserves the defining pullback square. Hence, we have a loops–

suspension adjunction on Alg𝑇(C) which commutes with the loops–suspension adjunction

of C as in the diagrams

Alg𝑇(C) Alg𝑇(C)

C C

Σ𝑇

free𝑇 free𝑇

Σ

Alg𝑇(C) Alg𝑇(C)

C C

Ω𝑇

fgt𝑇 fgt𝑇

Ω

of respectively left and right adjoints. From the unit of the adjunction Σ𝑇 ⊣ Ω𝑇, we obtain

a map

𝜎𝑇 ∶ 𝑇 → fgt𝑇Ω𝑇Σ𝑇free𝑇 ≃ Ωfgt𝑇free𝑇Σ = Ω𝑇Σ,

which we call the suspension morphism of the reduced monad 𝑇. This construction is natural

in the monad 𝑇, or in other words, it defines a functor

𝜎 ∶ Mnd
red(C) → Fun(Δ1,Mnd

red(C))

from the ∞-category of reduced monads on C to its arrow category. For the reduced

monad free𝐎 of a nonunital operad 𝐎, this construction provides a map of monads

𝜎free𝐎 ∶ free𝐎 → Ωfree𝐎Σ ≃ free𝐬𝐎 .
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Suspensionmorphism for operads Heuts–Land [HL24] conjecture that the map 𝜎free𝐎 arises

from a map of operads 𝐎 → 𝐬𝐎, thus a suspension morphism of the operad 𝐎. Note that

the functor free ∶ SSeq(C) → End(C) is in general not fully faithful; a counterexample in

the case C= Sp is given in [HL24, § 3.2]. Heuts–Land do show in [HL24, Theorem 3.8],

however, that the functor 𝐴 ↦ free𝐴 is fully faithful on a full monoidal subcategory of

symmetric sequences in spectra, those with ‘nilpotent Euler classes’. Among the operads

with nilpotent Euler classes are in particular theE𝑛-operads (but notE∞) and their operadic

suspensions. Hence, the map 𝜎freeE𝑛 ∶ freeE𝑛 → free𝐬E𝑛 must indeed come from a map of

operads E𝑛 → 𝐬E𝑛. A specific construction of such a map 𝜎 with the property that free𝜎 is

equivalent to 𝜎freeE𝑛 is given for the E𝑛-operads in spectra in [HL24, § 3.4].

Antolín-Camerena–Brantner–Heuts [ABH25] give a more general construction of a

suspension morphism 𝜎𝐎 ∶ 𝐎 → 𝐬𝐎 for all nonunital operads 𝐎 in spectra. The idea is to

first construct the suspension morphism 𝜎E∞ for the E∞-operad, which plays a central role

in Definition 3.2 of operadic suspension; then, tensoring 𝜎E∞ levelwise with the identity of

𝐎 gives a suspension morphism 𝜎𝐎.

Definition 3.3 Consider the canonical E∞-algebra structure on the monoidal unit S of C.
Applying the loop functorΩE∞ internal to the∞-category of E∞-algebras in C, we obtain

an E∞-algebra in Cwith underlying objectΩS = S−1. The suspension morphism of E∞ is

the corresponding map of operads

𝜎E∞ ∶ E∞ → End(S−1) = 𝐬E∞.

For any nonunital operad 𝐎 in C, the suspension morphism of 𝐎 is the map

𝜎𝐎 ∶ 𝐎 ≃ 𝐎 ⊗lev E∞
id𝐎⊗lev𝜎E∞−−−−−−−−−→ 𝐎 ⊗lev 𝐬E∞ ≃ 𝐬𝐎.

Antolín-Camerena–Brantner–Heuts show in [ABH25, Proposition 2.5] that the com-

posite

Alg𝐎(Sp)
S−1⊗−−−−−−→ Alg𝐬𝐎(Sp)

𝜎∗
𝐎−−→ Alg𝐎(Sp)

of the equivalence (2) and restriction along the suspensionmorphism of𝐎 is equivalent to the

loop functorΩ𝐎 onAlg𝐎(Sp). Since Heuts–Land show that the suspension morphisms they

constructed for the E𝑛-operads in spectra satisfy the same property, these two definitions

are equivalent.

Characterising suspension Given the multiple constructions of an operadic suspension

morphism 𝐎 → 𝐬𝐎 in the literature (see also § 4 for a discussion of different constructions

in the unstable setting), we would like a universal property that characterises operadic

suspension up to equivalence. In the stable case, Heuts–Land expect the suspension mor-

phism 𝜎 ∶ 𝐎 → 𝐬𝐎 of a nonunital operad 𝐎 in C to be characterised by the following

property [HL24, property (F)]:

∗© There is a canonical equivalence Σfree𝐬𝐎 ≃ free𝐎Σ in End(C). The adjoint map

free𝐬𝐎 → Σ−1free𝐎Σ (which is also an equivalence) refines to a map of monads
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making the diagram of monads

free𝐎

free𝐬𝐎 Σ−1free𝐎Σ

𝜎free𝐎free𝜎

≃

commute.

In particular, the maps of monads

free𝜎 ∶ free𝐎 → free𝐬𝐎 and 𝜎free𝐎 ∶ free𝐎 → Σ−1free𝐎Σ

should be equivalent in the arrow category of monads on C.

Heuts–Land show in [HL24, Theorem 3.11] that property ∗© is satisfied by their

construction of the suspension morphism for the spectral E𝑛-operads, so by [ABH25,

Remark 2.6], it is also satisfied by the suspension morphisms 𝜎E𝑛 of Definition 3.3.

Theorem 3.4 ([HL24]) The suspension morphism of the nonunital E𝑛-operad in spectra satisfies
property ∗© for all 𝑛 ⩾ 1.

Using the filtration

E1 ↪ E2 ↪ E3 ↪ … → E∞

of the E∞-operad by the E𝑛-operads, we can extend this result to the E∞-operad.

Proposition 3.5 The suspension morphism of the nonunital E∞-operad in spectra satisfies prop-
erty ∗©.

Proof We will use the filtration of E∞ by the E𝑛-operads and the fact that the E𝑛-operads

satisfy property ∗©: it suffices to prove that the functors 𝐎 ↦ free𝜎𝐎 and 𝐎 ↦ 𝜎free𝐎
preserve sifted colimits of nonunital operads. The equivalence 𝜎freeE∞ ≃ free𝜎E∞

then

follows from the corresponding equivalence for the E𝑛-operads, because both functors

preserve the colimit E∞ ≃ colim𝑛E𝑛.

The former functor𝐎 ↦ free𝜎𝐎 preserves sifted colimits since the suspension morphism

𝜎𝐎 ≃ id𝐎⊗𝜎E∞ is natural in𝐎 and the tensor product is assumed to preserve colimits in both

variables, and because free ∶ Opd(C) → Mnd(C) preserves sifted colimits by Lemma 2.6.

The latter functor 𝐎 ↦ 𝜎free𝐎 is the composition of the functors

Opd
nu(C) free−−→ Mnd

red(C) 𝜎−→ Fun(Δ1,Mnd
red(C))

of which the former preserves sifted colimits by Lemma 2.6. Since the monads free𝐎
preserve sifted colimits themselves as well, we can further factor the composite through the

∞-categoryMnd
Σ,red(C) of the monads on C that are reduced and preserve sifted colimits.

To see that 𝜎 preserves sifted colimits when restricted to this subcategory, it suffices to

check this after evaluating at the endpoints ofΔ1. At the endpoint 0, we recover the identity
functor, which certainly preserves sifted colimits. At the other endpoint 1, we have the
functor 𝑇 ↦ Ω𝑇Σ; to show that this functor preserves sifted colimits, we use an argument

similar to the one in Lemma 2.6: we have a commutative square

Mnd
Σ,red(C) Mnd

Σ,red(C)

End
Σ,red(C) End

Σ,red(C)

Ω−Σ

fgt fgt

Ω−Σ
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where the vertical forgetful functors create sifted colimits by [HA, Proposition 3.2.3.1] and

the bottom horizontal functor preserves all colimits (since Σ andΩ are equivalences).

Remark 3.6 The proof of Proposition 3.5 shows more generally that for a sifted diagram

𝐎 ∶ 𝐼 → Opd(C) of nonunital operads 𝐎𝑖 satisfying property ∗© for all 𝑖 ∈ 𝐼 in a natural
way (i.e., such that the equivalences free𝜎𝐎𝑖

≃ 𝜎free𝐎𝑖
are natural in 𝑖 ∈ 𝐼), the colimit of the

diagram 𝐎 again satisfies property ∗©.

Remark 3.7 In Proposition 3.5, we have proved that the E∞-operad in spectra satisfies

property ∗©. An open question remains if this result can be extended to all nonunital

operads𝐎 in spectra. SinceE∞ is the monoidal unit for the levelwise tensor product and we

defined suspension of a general operad by tensoring with the suspension of E∞, we might

suspect that, if property ∗© holds for all operads, one can use the result for E∞ to prove this.

To that end, one could try to relate the monad free𝐎⊗lev𝐏 associated to a levelwise tensor

product 𝐎⊗lev 𝐏 (specifically for 𝐏 = E∞) to the monads free𝐎 and free𝐏 associated to 𝐎
and 𝐏; a potential relation does not immediately present itself, however.

Remark 3.8 Another open question is to what extent property ∗© characterises operadic

suspension. Given two suspension morphisms 𝜎 ∶ 𝐎 → 𝐬𝐎 and 𝜎′ ∶ 𝐎 → 𝐬′𝐎 satisfying

property ∗©, one would directly obtain an equivalence free𝜎 ≃ free𝜎′, but an equivalence

𝜎 ≃ 𝜎′ does not immediately follow since free ∶ Opd(C) → Mnd(C) is not fully faithful
in general. It does follow for the E𝑛-operads if 𝐬E𝑛 and 𝐬′E𝑛 have nilpotent Euler classes,

as discussed below.

Although it is not clear whether suspension morphisms with property ∗© are essentially

unique, we can impose some additional (reasonable) conditions that do imply that any two

suspension morphisms satisfying them are equivalent. We propose here the following two

conditions (restricting to the case where C is the category of spectra), both clearly satisfied

by the suspension morphism of Definition 3.3:

1© There is a suspension 𝜎E∞ ∶ E∞ → 𝐬E∞ for the E∞-operad (the monoidal unit), and

the suspension morphism is a natural transformation 𝜎 ∶ id → 𝐬 to an endofunctor 𝐬
on the category of operads such that 𝜎 ≃ id ⊗lev 𝜎E∞ (via the canonical equivalence

id ≃ id ⊗lev E∞).

2© The underlying symmetric sequence of the suspension 𝐬E∞ of the E∞-operad is

equivalent to that of End(S−1).

Before showing that these assumptions determine an essentially unique suspension

morphism, let us justify them. The first implies that operadic suspension is functorial and

the suspension morphism is natural. It follows from the equivalence 𝜎 ≃ id ⊗lev 𝜎E∞ that

there is a natural equivalence

𝜎𝐎 ⊗lev id𝐏 ≃ 𝜎𝐎⊗lev𝐏 ≃ id𝐎 ⊗lev 𝜎𝐏,

and in particular a natural equivalence

𝐬𝐎 ⊗lev 𝐏 ≃ 𝐬(𝐎 ⊗lev 𝐏) ≃ 𝐎 ⊗lev 𝐬𝐏

for the codomains, analogous to the natural equivalence Σ𝑋 ⊗ 𝑌 ≃ Σ(𝑋 ⊗ 𝑌) ≃ 𝑋 ⊗ Σ𝑌
for suspension of spectra (or for pointed spaces). Like suspension of pointed spaces, spectra,
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or chain complexes is defined by tensoring with the right notion of a ‘sphere’, property 1©
essentially says that 𝐬E∞ plays the role of a sphere operad (as, indeed, the unstable operads

discussed in § 4 are called). Operadic suspension and the suspension morphism are thus

entirely determined by their value on the monoidal unit E∞.

The second condition is obviously necessary for any construction of operadic suspension

in order to agree with that of Definition 3.2. However, it is (a priori) definitely weaker

than asking for an equivalence of operads 𝐬E∞ ≃ End(S−1). Property 2© is equivalent to

demanding the terms 𝐬E∞(𝑛) be Σ𝑛-equivariantly equivalent to the representation spheres

S𝜌𝑛 . The utility of this property lies in the following consequence, phrased in terms of

‘nilpotent Euler classes’ in the sense of [HL24, Definition 3.4]:

2©′ A symmetric sequence 𝐴 has nilpotent Euler classes if and only if its suspension

𝐬𝐴 = 𝐴 ⊗lev 𝐬E∞ has nilpotent Euler classes.

Indeed, this follows from the proof of [HL24, Lemma 3.6], which shows that the property

of a symmetric sequence of having nilpotent Euler classes is closed under tensoring with

the symmetric sequence formed by the representation spheres S𝜌𝑛 . Property 2©′ in turn has

the following useful consequence, as follows from [HL24, Theorem 3.8]:

2©″ The functor free ∶ Opd(Sp) → Mnd(Sp) is fully faithful on the full subcategory

spanned by the E𝑛-operads and their suspensions 𝐬E𝑛.

In particular, an equivalence free𝜎E𝑛
≃ free𝜎′

E𝑛
of maps of monads would imply an equiva-

lence 𝜎E𝑛 ≃ 𝜎′
E𝑛

of suspension morphisms if 𝜎 and 𝜎′ satisfy property 2©″. In practice, it

will probably be easier to check property 2© for a given construction of operadic suspension,

which is a property of the symmetric sequences of the suspensions 𝐬E𝑛.

We conclude by showing that additionally assuming properties 1© and 2© ensure

essential uniqueness of the suspension morphism. Given these properties, we only need to

assume property ∗© holds for the E𝑛-operads.

Proposition 3.9 There is an essentially unique natural endofunctor 𝐬 on the ∞-category Opd(Sp)
of nonunital operads in spectra, together with a natural transformation 𝜎 ∶ id → 𝐬 satisfying
properties 1© and 2©, such that 𝜎E𝑛 ∶ E𝑛 → 𝐬E𝑛 satisfies property ∗© for all 𝑛 ⩾ 1.

Proof Existence is provided by Definition 3.3.

For uniqueness, let 𝜎 ∶ id → 𝐬 and 𝜎′ ∶ id → 𝐬′ be any two such natural operadic

suspension morphisms. By property ∗©, we obtain equivalences

free𝜎E𝑛
≃ 𝜎freeE𝑛 ≃ free𝜎′

E𝑛

(where the middle map is the suspension morphism of the monad freeE𝑛). Invoking prop-

erty 2© (or rather, its consequence 2©″) then gives us equivalences 𝜎E𝑛 ≃ 𝜎′
E𝑛
. Property 1©

tells us that 𝜎 and 𝜎′ are given by tensoring with respectively 𝜎E∞ and 𝜎′
E∞

, so it follows that

they preserve colimits since the tensor product preserves them separately in each variable.

In particular, for the colimit E∞ ≃ colim𝑛E𝑛, we get an equivalence

𝜎E∞ ≃ 𝜎colim𝑛E𝑛
≃ colim

𝑛
𝜎E𝑛 ≃ colim

𝑛
𝜎′
E𝑛

≃ 𝜎′
colim𝑛E𝑛

≃ 𝜎′
E∞

.

For any nonunital operad 𝐎, we now have a natural equivalence

𝜎𝐎 ≃ id𝐎 ⊗lev 𝜎E∞ ≃ id𝐎 ⊗lev 𝜎′
E∞

≃ 𝜎′
𝐎,

finishing the proof.
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Remark 3.10 In light of property 1©, the focus should be on the suspension morphism

𝜎E∞ ∶ E∞ → 𝐬E∞ of the monoidal unit E∞, since the suspension morphism for other

operads is simply given by tensoring the identity with 𝜎E∞ . We can then rephrase Propo-

sition 3.9 as follows: there is an essentially unique morphism 𝜎E∞ ∶ E∞ → 𝐬E∞ out of

E∞ such that there are equivalences 𝐬E∞(𝑛) ≃ S𝜌𝑛 in Fun(𝐵Σ𝑛, Sp) and the morphisms

idE𝑛 ⊗lev 𝜎E∞ satisfy property ∗©.

3.3 Invertible operads

In this section, we discuss a second approach to characterising operadic suspension in the

stable case. The starting point is the fact, observed in § 3.1, that the suspension 𝐬E∞ of the

E∞-operad is invertible with respect to the levelwise tensor product: there is an equivalence

𝐬E∞ ⊗lev 𝐬−1E∞ ≃ E∞.

This property is analogous to the equivalence S1 ⊗ S−1 ≃ S of spectra, and in the category

of spectra, the invertible objects are precisely the shifts S𝑑 of the sphere spectrum for 𝑑 ∈ Z.
Moreover, the set of equivalence classes of invertible spectra obtains a group structure from

the tensor product, which is called the Picard group of spectra and is isomorphic to Z; the
suspended sphere spectrum S1 is then characterised up to equivalence by the fact that it

generates the Picard group.

We conjecture that a similar statement holds for nonunital operads in spectra: the

invertible operads are precisely the iterated suspensions 𝐬𝑑E∞ (for 𝑑 ∈ Z), and the Picard
group of spectral operads is isomorphic to Z and generated by 𝐬E∞. This would provide a

characterisation of operadic suspension up to equivalence.

In practice, showing an operad 𝐎 is invertible requires specifying a large amount of

data: one has to define another operad 𝐏 and a map of operads 𝐎 ⊗lev 𝐏 → E∞ that is

an equivalence. We study the relationship between invertibility and an a priori weaker
condition that we call ‘quasi-invertibility’: an operad 𝐎 is quasi-invertible if the terms 𝐎(𝑛)
are invertible and if the partial composition maps of 𝐎 are equivalences. We show that

the underlying symmetric sequence of a quasi-invertible operad in spectra is equivalent to

that of 𝐬𝑑E∞ for some 𝑑 ∈ Z. Moreover, we show that any invertible operad in spectra is

quasi-invertible, and we claim the converse should also be true. Using an alternative model

of enriched∞-operads that is used by Hoffbeck–Moerdijk [HM24], as certain presheaves

on a category of trees, we discuss how to construct an inverse of a quasi-invertible operad;

however, no comparison between enriched∞-operads in terms of symmetric sequences

(used throughout this thesis) and the model of ibid. is currently available.

The Picard group Let (C, ⊗,𝟙) be a symmetric monoidal∞-category. An object 𝑋 ∈ C is

called invertible if there is an object 𝑋∗ ∈ C such that 𝑋 ⊗𝑋∗ ≃ 𝟙. We write Pic(C) for the
Picard category of C, the full subcategory spanned by the invertible objects. Its∞-groupoid

core pic(C) ≔ Pic(C)≃ is called the Picard groupoid or Picard space of C, and the collection
𝜋0(pic(C)) of isomorphism classes of invertible objects is the Picard group of C. The group
operation is given by the tensor product of C, with unit 𝟙. The Picard group is indeed a
small group if C is presentable, cf. [MS16, Remark 2.1.4]. It is also abelian since the tensor

product of C is assumed to be symmetric (more generally, if C is any monoidal∞-category,

the Picard group need not be abelian).
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If C is stable and the tensor product commutes with colimits in both variables separately,

there is a natural homomorphism

Z→ 𝜋0(pic(C)), 𝑛 ↦ S𝑛 = Σ𝑛𝟙 (3)

into the Picard group of C (cf. [MS16, Example 2.1.5]).

Example 3.11 In the symmetric monoidal∞-category of spectra, the invertible objects are

precisely the shifts S𝑑 of the sphere spectrum, and the map (3) is an isomorphism. The

spectrum S1 is thus characterised by the fact that it generates the Picard group of Sp. Proofs
of this (elementary) fact can be found in [HMS94, § 1], [Str92, Theorem 2.2], and [MS16,

Example 2.1.6].

Example 3.12 Let 𝐺 be a finite group and consider the∞-category Fun(𝐵𝐺, Sp) of spectra
with a 𝐺-action, equipped with the pointwise symmetric monoidal structure. The underly-

ing object of an invertible object in this category should be an invertible spectrum, and is

thus of the form S𝑑 for some 𝑑 ∈ Z. Moreover, any group must act by equivalences; by the

degree isomorphism 𝜋𝑑(S𝑑) ≃ Z, self-maps of S𝑑 are determined up to homotopy by their

degree, and only the maps of degree 1 or −1 are equivalences. Any group homomorphism

𝐺 → {±1} ↪ Z ≃ 𝜋𝑑(S𝑑)

determines a𝐺-action on S𝑑, so it follows that any𝐺-action on S𝑑 makes it into an invertible

object in Fun(𝐵𝐺, Sp).
For the symmetric group 𝐺 = Σ𝑛 (for 𝑛 ⩾ 2), there are precisely two maps Σ𝑛 → Z/2,

or equivalently, two Σ𝑛-module structures on Z: the trivial and the sign representation.
The invertible objects in Fun(𝐵Σ𝑛, Sp) are thus the shifts S𝑑 of the sphere spectrum with

either the trivial or the sign representation. It follows that the Picard group is

𝜋0(pic(Fun(𝐵Σ𝑛, Sp))) ≃ Z ⊕Z/2.

Example 3.13 From the previous example, we obtain a description of the invertible objects

in the ∞-category SSeq(Sp) with the levelwise tensor product. Indeed, this category is

equivalent to the coproduct of Fun(𝐵Σ𝑛, Sp) for all 𝑛 ⩾ 0. The symmetric sequences in

spectra that are invertible for the levelwise tensor product are then precisely the sequences

𝐴 of shifts 𝐴(𝑛) ≃ S𝑑𝑛 of the sphere spectrum with trivial or sign representation (except

for 𝑛 = 0, 1, in which case there is only the trivial representation).

The Picard group of operads Observe that the suspension 𝐬E∞ of the E∞-operad in spectra

(as defined in Definition 3.2) has invertible terms. In fact, 𝐬E∞ is invertible with respect to

the levelwise tensor product, with inverse 𝐬−1E∞. We expect that the map

Z ↦ 𝜋0(pic(Opd
nu(Sp))), 𝑛 ↦ 𝐬𝑛E∞ (4)

is an isomorphism, and in particular that 𝐬E∞ generates the Picard group of nonunital

operads in spectra with the levelwise tensor product.

Conjecture 3.14 The Picard group of nonunital operads in spectra is isomorphic to Z and generated
by the suspension 𝐬E∞ of the E∞-operad.
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As in the case of spectra, this would characterise the operad 𝐬E∞. The map (4) is clearly

injective (consider the terms in degree two and use the result for spectra); therefore, it

remains to show that it is surjective, i.e., that every invertible nonunital operad is equivalent

to 𝐬𝑑E∞ for some 𝑑 ∈ Z.
Note that the map (4) being an isomorphism means that the existence of an operad

structure on a symmetric sequence 𝐴 should greatly restrict the invertible objects, since we

saw in Example 3.13 that the shift 𝑑𝑛 of 𝐴(𝑛) ≃ S𝑑𝑛 and the Σ𝑛-action can be freely chosen,

whereas the choice is limited for operads. We claim this is rather plausible: admitting the

structure of an operad is indeed quite a strong condition on a symmetric sequence.

Quasi-invertibility We first show that we can detect an operad 𝐎 having the same un-

derlying symmetric sequence as a suspension 𝐬𝑑E∞ of the E∞-operad by a rather simple

criterion: that the terms 𝐎(𝑛) be invertible spectra and the partial composition maps be

equivalences. We call operads satisfying these hypotheses quasi-invertible.

Definition 3.15 Let 𝐎 be a nonunital operad in a symmetric monoidal∞-category (C, ⊗).
We call 𝐎 quasi-invertible if the terms 𝐎(𝑛) are invertible objects of C for all 𝑛 ⩾ 1 and all

partial composition maps

∘𝑖 ∶ 𝐎(𝑘) ⊗ 𝐎(ℓ) → 𝐎(𝑘 + ℓ − 1)

of 𝐎 are equivalences.

Remark 3.16 The condition that an operad 𝐎 be quasi-invertible is a priori weaker than
the existence of what we might call a ‘quasi-inverse’: an operad 𝐏 such that 𝐎⊗lev 𝐏 has

symmetric sequence equivalent toE∞ andwith partial compositionmaps being equivalences.

We claim, however, that being quasi-invertible is in fact equivalent to having a quasi-

inverse, and even to being invertible; we outline how one might prove this at the end of

the section.

Lemma 3.17 Let 𝐎 be a nonunital operad in spectra. If 𝐎 is quasi-invertible, then the underlying
symmetric sequence of 𝐎 is equivalent to that of 𝐬𝑑E∞ for some 𝑑 ∈ Z.

Proof In low levels, we have 𝐎(0) = 0 and 𝐎(1) = S. In the next level, we have a

suspended sphere spectrum 𝐎(2) ≃ S𝑑 for some 𝑑 ∈ Z. The partial composition maps give

equivalences

𝐎(𝑛 + 1) = 𝐎(𝑛 + 2 − 1) ≃ 𝐎(𝑛) ⊗ 𝐎(2) ≃ 𝐎(𝑛) ⊗ S𝑑

for all 𝑛 ⩾ 1. By induction, the operad 𝐎 thus has terms 𝐎(𝑛) ≃ S(𝑛−1)𝑑, as does 𝐬𝑑E∞.

It remains to show that the Σ𝑛-actions of 𝐎(𝑛) and 𝐬𝑑E∞(𝑛) agree. Desuspending 𝑑
times, we may assume 𝑑 = 0. For any permutation 𝜎 ∈ Σ𝑛, the operad structure provides a

commutative diagram

𝐎(𝑛) ⊗ 𝐎(1)⊗𝑛 𝐎(𝑛) ⊗ 𝐎(1)⊗𝑛

𝐎(𝑛)

𝜎∗⊗𝜎∗
≃

∘
≃

∘
≃

where the self-equivalence 𝜎∗ of 𝐎(1)⊗𝑛, permuting the factors by 𝜎, is equivalent to the
identity of S. It follows (on account of the degree of self-maps of the sphere spectrum) that
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𝜎∗ on 𝐎(𝑛) is also equivalent to the identity of S, and we conclude that Σ𝑛 acts trivially on

𝐎(𝑛), as it does on E∞(𝑛).

The criterion of quasi-invertibility is in particular satisfied by operads that are invertible

for the levelwise tensor product.

Proposition 3.18 Let 𝐎 be a nonunital operad in spectra. If 𝐎 is invertible with respect to the
levelwise tensor product, then it is quasi-invertible.

The proof depends on the following observation.

Lemma 3.19 The restriction

⊗ ∶ Pic(Sp) × Pic(Sp) → Pic(Sp)

of the smash product of spectra to the full subcategory of invertible spectra is conservative.

Proof Let 𝑓 ∶ S𝑑 → S𝑑′ and 𝑔 ∶ S𝑒 → S𝑒′ be maps between invertible spectra such that their

smash product 𝑓 ⊗ 𝑔 ∶ S𝑑+𝑒 → S𝑑′+𝑒′ is an equivalence. We have to show that 𝑓 and 𝑔 are
equivalences. By suspending as we please, we may assume that 𝑑′ = 𝑒′ = 0. Note that 𝑓 ⊗ 𝑔
can then only be an equivalence if 𝑑 = −𝑒. If 𝑑 < 0, then 𝑓 is null, and dually, 𝑔 is null if
𝑑 > 0; thus, we must have 𝑑 = 0 for 𝑓 ⊗𝑔 to be an equivalence. Now 𝑓 and 𝑔 are self-maps

of the sphere spectrum, and we can argue using the degree isomorphism 𝜋0(S) ≃ Z. The
degrees of 𝑓 and 𝑔 satisfy

1 = deg(idS) = deg(𝑓 ⊗ 𝑔) = deg(𝑓) deg(𝑔),

so both degrees are ±1. We conclude that 𝑓 and 𝑔 are equivalences.

Proof (of Proposition 3.18) Choose an operad 𝐏 with 𝐎 ⊗lev 𝐏 ≃ E∞. Then for all 𝑛 ⩾ 1, we
have 𝐎(𝑛) ⊗ 𝐏(𝑛) ≃ S, so 𝐎 has invertible terms. It follows that there exist 𝑑𝑛 ∈ Z with

𝐎(𝑛) ≃ S𝑑𝑛 and 𝐏(𝑛) ≃ S−𝑑𝑛 . The partial composition map

∘𝑖 ∶ (𝐎 ⊗lev 𝐏)(𝑘) ⊗ (𝐎 ⊗lev 𝐏)(ℓ) → (𝐎 ⊗lev 𝐏)(𝑘 + ℓ − 1)

is the tensor product of the corresponding partial composition maps of 𝐎 and 𝐏. Thus, it is
a tensor product of maps between invertible spectra which is equivalent to the identity of S
(the corresponding structure map of E∞). By Lemma 3.19, we conclude that the partial

composition map of 𝐎 is an equivalence.

Corollary 3.20 Let𝐎 be a nonunital operad in spectra. If𝐎 is invertible with respect to the levelwise
tensor product, then the underlying symmetric sequence of 𝐎 is equivalent to that of 𝐬𝑑E∞ for some
𝑑 ∈ Z.

Proof Directly from Lemma 3.17 and Proposition 3.18.

Remark 3.21 To conclude that the Picard group of nonunital operads in spectra is isomorphic

to Z and generated by 𝐬E∞, it now remains to show for every 𝑑 ∈ Z that the operad

structure of 𝐬𝑑E∞ is (up to equivalence) the unique quasi-invertible operad structure on its

underlying symmetric sequence. It suffices to show this for 𝑑 = 0, that is, to show that a

quasi-invertible operad𝐎 that looks like E∞ as symmetric sequences is in fact equivalent to

it as an operad. The difficulty here is in producing a comparison map, of which we can try

to prove that is an equivalence: given abstract equivalences𝐎(𝑛) ≃ S, one should construct
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a large structure of cohering homotopies and higher homotopies. One might attempt such

by some inductive argument, but we do not pursue this matter here.

Remark 3.22 In the linear case, say of nonunital operads in the ∞-category Ch⩾0(Z) of
nonnegatively graded chain complexes ofZ-modules, it is more straightforward to produce

a comparison map. Indeed, let 𝐎 be a nonunital operad in Ch⩾0(Z) and assume that it is

quasi-invertible up to quasi-isomorphism: there are isomorphisms of chain complexes

𝐻∗(𝐎(𝑛)) ≃ Z[0]

for all 𝑛 ⩾ 1 and the partial composition maps of 𝐎 induce isomorphisms

𝐻∗(∘𝑖) ∶ 𝐻∗(𝐎(𝑘) ⊗ 𝐎(ℓ)) ≃−→ 𝐻∗(𝐎(𝑘 + ℓ − 1))

on homology. Then the symmetric monoidal endofunctor 𝐻0 ∶ Ch⩾0(Z) → Ch⩾0(Z),
sending a chain complex to its 0th homology seen as a chain complex concentrated in degree

zero, induces a functor at the level of operads, and we have an isomorphism 𝐻0(𝐎) ≃ E∞.

Moreover, there is a natural transformation id → 𝐻0 from the identity to this endofunctor,

and one verifies that this provides an equivalence

𝐎 ≃−→ 𝐻0(𝐎) ≃ E∞.

It follows that the Picard group of nonunital operads in Ch⩾0(Z) is isomorphic to Z via

the map 𝑛 ↦ 𝐬𝑛E∞.

An analogous strategy fails for the case of spectra, as the 0-truncation of the sphere

spectrum S is the Eilenberg–Mac Lane spectrum HZ, not the sphere spectrum itself. One

could attempt to inductively construct a map, but we do not investigate this method here.

From quasi-invertibility to invertibility We have seen in Proposition 3.18 that for nonunital

operads in spectra, the condition of invertibility implies quasi-invertibility. One might

wonder about the inverse implication, whether a quasi-invertible operad of spectra must be

invertible (or otherwise, to describe the operads that are quasi-invertible but not invertible).

Indeed, we expect invertibility and quasi-invertibility to be equivalent conditions for

operads in spectra. We sketch how one might go about proving this; we claim one should

be able, given a quasi-invertible operad 𝐎 in spectra, to produce an operad 𝐏 such that

(1) 𝐎⊗lev 𝐏 is quasi-invertible and has symmetric sequence equivalent to that of E∞, but

moreover that (2) 𝐎 ⊗lev 𝐏 is actually equivalent to E∞. The obstacle of Remark 3.21

to producing an equivalence 𝐎 ⊗lev 𝐏 ≃ E∞ would remain if only the first condition is

satisfied, but we claim one should be able to construct the operad 𝐏 in such a way that the

equivalences 𝐎(𝑛) ⊗ 𝐏(𝑛) ≃ S are sufficiently natural.
Suppose 𝐎 is a quasi-invertible nonunital operad in spectra. Then its terms 𝐎(𝑛) are

invertible spectra, so in particular dualisable. Applying the Spanier–Whitehead dual

(−)∨ = map(−, S) ∶ Spop → Sp

levelwise to 𝐎, one obtains a cooperad 𝐎∨. The terms of 𝐎 and 𝐎∨ are levelwise inverse

to each other, and the partial composition maps of 𝐎∨ are equivalences; in other words,

𝐎∨ is a quasi-invertible cooperad. One would like to invert the structure maps of 𝐎∨ in a

coherent way to make it into an operad.
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Observe that in the 1-categorical case, a cooperad having isomorphisms as partial

composition maps means one can choose inverses of the structure maps and show that

they assemble into the structure of an operad. For operads in higher categories, this is not

as straightforward: if the partial composition maps of an operad 𝐎 are equivalences, the

multiplication map 𝐎 ∘ 𝐎 → 𝐎 need not be an equivalence itself. Encoding operads as

certain presheaves, however, we claim the cooperad 𝐎∨ can be made into an operad.

Hoffbeck–Moerdijk [HM24] define nonunital operads as presheaves (with some addi-

tional data) on a category of rooted treesA. The categoryA is a (non-full) subcategory

of the category 𝛀 defined by Moerdijk–Weiss [MW07] in the context of dendroidal

sets. The category 𝛀 contains the simplex category 𝚫, and the relation between categories

and simplicial sets extends to a relation between operads (in a more general sense than

we use here, namely coloured symmetric operads) and dendroidal sets. Restricting to the

subcategoryA of [HM24] imposes the condition that the operads be nonunital.

Informally, one can associate to a nonunital operad 𝐏 in a symmetric monoidal ∞-

category a C-valued presheaf 𝐹𝐏 on A whose value on a tree 𝑇 is the tensor product

ranging over all the vertices 𝑣 ∈ 𝑇 of the objects 𝐏(in 𝑣), where in 𝑣 denotes the number of

incoming edges of vertex 𝑣. The morphisms inAop are ‘inner edge contractions’, and they

are sent by 𝐹𝐏 to the corresponding composition and tensor product of partial composition

maps. Conversely, to let such presheaves 𝐹 onA correspond to operads, one has to equip it

with more data: for trees 𝑆 and 𝑇 and a leaf 𝑣 ∈ 𝑆, there should be a chosen equivalence

𝐹(𝑆 ∘𝑣𝑇) ≃ 𝐹(𝑆)⊗𝐹(𝑇) (natural in a certain way), where 𝑆 ∘𝑣𝑇 denotes the tree obtained by

grafting 𝑇 on top of 𝑆 at the place of 𝑣. These data should moreover satisfy some associativity

axioms. We refer to [HM24] for detailed definitions.

This encoding of operads is well-equipped to deal with (co)operads whose partial

composition maps are equivalences: if 𝐏 is such an operad, the presheaf 𝐹𝐏 ∶ Aop → Sp

factors through the core Sp≃, and the converse is also true. Now one can exploit the fact

that any ∞-groupoid, such as the core, is equivalent to its own opposite ∞-category.

Alternatively, instead of applying the core (−)≃ to the codomain, we can apply its left

adjoint 𝐾 of ‘groupoid completion’ toA, and look at presheaves on 𝐾(A). Precomposing

with the equivalence 𝐾(A) ≃ 𝐾(A)op then turns a presheaf on 𝐾(𝐴) into a copresheaf,

and this procedure turns 𝐹𝐏 into a cooperad. An equivalence between the ∞-categories

of operads in Sp and the ∞-category of certain presheaves on A, and dually, between

cooperads and certain copresheaves, would thus equip a quasi-invertible cooperad with the

structure of an operad.

We would then obtain an operad structure on 𝐎∨ exhibiting it as a quasi-inverse

to 𝐎 (in the sense of Remark 3.16), showing that being quasi-invertible implies having

a quasi-inverse. Showing that 𝐎∨ is an actual inverse now comes down to constructing

a comparison map between 𝐎 ⊗lev 𝐎∨ and E∞ and showing it is an equivalence, as in

Remark 3.21.

We should, however, be able to exploit the model of operads as presheaves onA to

obtain a stronger result. For any∞-groupoid 𝐾, equipping the functor category Fun(𝐾, Sp)
with the pointwise symmetric monoidal structure (which is closed) should give an equiva-

lence

Pic(Fun(𝐾, Sp)) ≃ Fun(𝐾,Pic(Sp)).

In other words, a functor 𝐹 ∶ 𝐾 → Sp should be invertible with respect to the pointwise

tensor product if and only if the spectra 𝐹(𝑥) are invertible for all 𝑥 ∈ 𝐾. Then, the
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presheaf 𝐹𝐎 on 𝐾(A) associated to a quasi-invertible operad 𝐎 is invertible as an object

of Fun(𝐾(A)op, Sp), and its inverse 𝐺 should correspond to an inverse of the operad 𝐎.

Indeed, 𝐺 being inverse to 𝐹 in the presheaf category means there is a natural equivalence

𝐹 ⊗lev 𝐺 ≃ constS, giving rise to an equivalence of operads.

4 Unstable operadic suspension

In the previous section, we discussed operadic suspension for operads in stable∞-categories

C, and in particular in the∞-category of spectra. The notion should already exist when

C is only assumed to be pointed, specifically in the symmetric monoidal∞-category Spc∗
of pointed spaces with smash product. Indeed, Arone–Kankaanrinta [AK14] and Ching–

Salvatore [CS22] construct ‘sphere operads’ in the 1-category of pointed topological spaces,

providing unstable versions of the suspension 𝐬E∞ = End(S−1) of theE∞-operad in spectra

(the monoidal unit with respect to the levelwise tensor product). These constructions,

although not isomorphic, both become equivalent to the spectral operad 𝐬E∞ after applying

the suspension spectrum functor Σ∞ ∶ Spc∗ → Sp levelwise; in other words, they are stably

equivalent.

A ‘sphere operad’ is an operad 𝐒 in pointed spaces with terms 𝐒(𝑛) ≃ 𝑆𝑛−1 for all 𝑛 ⩾ 1
and with partial composition maps that are equivalences; we describe the construction of

the operad structure in detail in § 4.1. Smashing an operad 𝐎 levelwise with such a sphere

operad 𝐒 then gives an operad 𝐎∧ 𝐒 with terms

(𝐎 ∧ 𝐒)(𝑛) = 𝐎(𝑛) ∧ 𝐒(𝑛) ≃ 𝐎(𝑛) ∧ 𝑆𝑛−1 ≃ Σ𝑛−1𝐎(𝑛),

providing an operadic suspension 𝐬𝐎 ≔ 𝐎 ∧ 𝐒 of 𝐎 in the unstable case.

As in the stable case, it is desirable to characterise such sphere operads unstably, provid-

ing comparisons between the different constructions in the literature and with the stable

operadic suspension. In this section, we first prove that the constructions of the sphere op-

erads of Arone–Kankaanrinta and Ching–Salvatore are indeed already unstably equivalent.

The proof we present here is by ‘point-set’ means, that is, by constructing an explicit zigzag

of weak equivalences, and not via some characterising universal property (which would be

preferable). We conclude with a discussion of to what extent the methods of § 3 for the

stable case should or could extend to the unstable case.

4.1 Sphere operads

The existence of homeomorphisms

𝑆𝑛−1 ∧ 𝑆𝑘1−1 ∧…∧ 𝑆𝑘𝑛−1 ≅−→ 𝑆𝑘1+⋯+𝑘𝑛−1

for positive integers 𝑛, 𝑘1,… , 𝑘𝑛 suggests that these homeomorphisms could be chosen

in such a way that they fit together as composition maps in the structure of a nonunital

operad 𝐒 in the 1-category of pointed spaces with 𝐒(𝑛) = 𝑆𝑛−1 for all 𝑛 ⩾ 1. Indeed,
Arone–Kankaanrinta construct such a sphere operad in [AK14] and show that it satis-

fies some desirable properties (for instance, the structure maps are homeomorphisms).

Similarly, Ching–Salvatore construct in [CS22] an operad whose 𝑛th space is homotopy

equivalent, but not homeomorphic, to the sphere 𝑆𝑛−1. Both Arone–Kankaanrinta and
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Ching–Salvatore show that their sphere operads are stably equivalent to the coendomor-

phism operad of the suspended sphere spectrum S1; thus, the two different constructions
produce equivalent operads when passed to spectra. In this section, we prove by ‘point-set’

means, that is, using explicit constructions, that the sphere operads of Arone–Kankaanrinta

and Ching–Salvatore are already unstably equivalent, as operads in pointed spaces.

The Arone–Kankaanrinta sphere operad Arone–Kankaanrinta define sphere operads 𝐒𝑝 for

all integers 1 ⩽ 𝑝 ⩽ ∞ as the levelwise one-point compactification of ‘simplex operads’ 𝚫𝑝
with multiplicative structure maps. Explicitly, the 𝑝th simplex operad 𝚫𝑝 consists of the

spaces

𝚫𝑝(𝑛) ≔ Δ𝑛−1
𝑝 = { 𝑡 ∈ (0,∞)𝑛 | ‖𝑡‖𝑝 = 1 },

where ‖−‖𝑝 denotes the ℓ𝑝 norm; on this space, Σ𝑛 acts by permutation of the coordinates.

For 1 ⩽ 𝑖 ⩽ 𝑛, the 𝑖th partial composition map ⋅𝑖 ∶ 𝚫𝑝(𝑛) ×𝚫𝑝(𝑘) → 𝚫𝑝(𝑛 + 𝑘 − 1) is given
by

𝑡 ⋅𝑖 𝑢 ≔ (𝑡1,… , 𝑡𝑖−1, 𝑡𝑖𝑢1,… , 𝑡𝑖𝑢𝑘, 𝑡𝑖+1,… , 𝑡𝑛). (5)

Arone–Kankaanrinta show that the sphere operads 𝐒𝑝 are pairwise weakly equivalent for

different 𝑝. Of special interest is the operad 𝐒∞, satisfying an additional desirable property

that is not satisfied by the 𝐒𝑝 for 𝑝 < ∞. To compare Arone–Kankaanrinta’s operads to

Ching–Salvatore’s, it is most convenient to use the operad𝐊 of [AK14, Remark 4.2], whose

definition was proposed to Arone–Kankaanrinta by Ching, which has additive structure

maps and is isomorphic to the simplex operad 𝚫∞.

The operad 𝐊 is defined to consist of the spaces

𝐊(𝑛) ≔ { (𝑥1,… , 𝑥𝑛) ∈ R𝑛 | min
1⩽𝑖⩽𝑛

𝑥𝑖 = 0 },

inheriting the Σ𝑛-action from R𝑛, which permutes the axes. For 1 ⩽ 𝑖 ⩽ 𝑛, the 𝑖th
composition map +𝑖 ∶ 𝐊(𝑛) × 𝐊(𝑘) → 𝐊(𝑛 + 𝑘 − 1) is given by

𝑥 +𝑖 𝑦 ≔ (𝑥1,… , 𝑥𝑖−1, 𝑥𝑖 + 𝑦1,… , 𝑥𝑖 + 𝑦𝑘, 𝑥𝑖+1,… , 𝑥𝑛).

We obtain a sphere operad by applying one-point compactification levelwise, which is

functorial with respect to proper maps and thus a symmetric monoidal functor from the

1-category of locally compact Hausdorff spaces with proper maps to the 1-category of

pointed spaces, the former equipped with the cartesian product and the latter with the

smash product. We denote this sphere operad by 𝐒AK.
Another description of the Arone–Kankaanrinta sphere operad (up to isomorphism) that

will be useful is in terms of representation spheres. This description is perhaps conceptually

most favourable, and is used by [HL24]. Let 𝜌𝑛 ≔ R𝑛/Δ denote the reduced standard

representation of Σ𝑛, the quotient of the standard Σ𝑛-representation R
𝑛 (where Σ𝑛 acts by

permutation of the axes) by the diagonal Δ (which is precisely the subspace of fixed points).

We write [−] ∶ R𝑛 → 𝜌𝑛 for the (Σ𝑛-equivariant) quotient map.

Lemma 4.1 For every 𝑛, the map 𝐊(𝑛) → 𝜌𝑛, 𝑥 ↦ [𝑥] is a Σ𝑛-equivariant homeomorphism.

Proof This map is the composite of the inclusion 𝐊(𝑛) → R𝑛 and the quotient R𝑛 → 𝜌𝑛,
both of which are equivariant. Define an inverse map by

[𝑥] ↦ (𝑥1 −min
𝑖

𝑥𝑖,… , 𝑥𝑛 −min
𝑖

𝑥𝑖).

28



This is well-defined: if we have 𝑥, 𝑦 ∈ R𝑛 and 𝜆 ∈ R such that 𝑥𝑖 − 𝑦𝑖 = 𝜆 for all 𝑖, then

𝑥𝑗 −min
𝑖

𝑥𝑖 = 𝑦𝑗 + 𝜆 −min
𝑖
(𝑦𝑖 + 𝜆) = 𝑦𝑗 −min

𝑖
𝑦𝑖.

It is readily verified these maps are inverse to each other.

It follows from the lemma that we can describe the operad 𝐊 up to homeomorphism as

the operad 𝝆 consisting of the reduced standard Σ𝑛-representations. For 1 ⩽ 𝑖 ⩽ 𝑛, the 𝑖th
partial composition map +𝑖 ∶ 𝜌𝑛 × 𝜌𝑘 → 𝜌𝑛+𝑘−1 is then given in terms of the corresponding

structure map of 𝐊 by

[𝑥] +𝑖 [𝑦] ≔ [𝑥 +𝑖 𝑦].

We can therefore also describe the Arone–Kankaanrinta sphere operad 𝐒AK as the one-point

compactification of 𝝆, and thus to have representation spheres 𝑆𝜌𝑛 as terms; we write 𝐒𝝆

for this description.

The Ching–Salvatore sphere operad Ching–Salvatore define a sphere operad 𝐒𝑉 for every

finite-dimensional real vector space 𝑉. The 𝑛th term of 𝐒𝑉 is homotopy equivalent to a

sphere of dimension (𝑛−1) dim𝑉. As noted in [CS22, Remark 2.18], one advantage of their

construction with respect to Arone–Kankaanrinta’s is that 𝐒𝑉 inherits aGL(𝑉)-action from
the action on 𝑉. For our purposes, we may disregard the GL(𝑉)-action, and we consider
the sphere operad 𝐒R associated to the one-dimensional vector space R, which we denote

𝐒CS.
We use the description provided in the proof of [CS22, Proposition 2.15] to define

the operad 𝐒CS. One starts with an operad 𝐑 (denoted 𝐑R in [CS22]) with terms 𝐑(𝑛) ≔
𝜌𝑛×𝚫1(𝑛) formed from the terms of the operads 𝝆 and𝚫1 introduced before. For 1 ⩽ 𝑖 ⩽ 𝑛,
the 𝑖th partial composition map +𝑖 ∶ 𝐑(𝑛) × 𝐑(𝑘) → 𝐑(𝑛 + 𝑘 − 1) is given by

([𝑥], 𝑡) +𝑖 ([𝑦], 𝑢) ≔ ([𝑥 +𝑖 𝑡𝑦], 𝑡 ⋅𝑖 𝑢) (6)

where ⋅𝑖 denotes the corresponding structure map of the simplex operad 𝚫1 and

𝑥 +𝑖 𝑡𝑦 ≔ (𝑥1,… , 𝑥𝑖−1, 𝑥𝑖 + 𝑡𝑖𝑦1,… , 𝑥𝑖 + 𝑡𝑖𝑦𝑘, 𝑥𝑖+1,… , 𝑥𝑛).

The projection 𝐑 → 𝚫1 is levelwise a trivial vector bundle with fibre 𝜌𝑛. The sphere
operad 𝐒CS is now defined by taking 𝐒CS(𝑛) to be the Thom space of the vector bundle

𝐑(𝑛) → 𝚫1(𝑛), which can be described as the smash product

𝐒CS(𝑛) ≅ 𝑆𝜌𝑛 ∧ 𝚫1(𝑛)+.

The partial composition maps of 𝐒CS are homeomorphisms induced by isomorphisms of

vector bundles over isomorphic bases, and make it into an operad (see [CS22, Proposi-

tion 2.17]).

Equivalence of the sphere operads We now show that the sphere operads 𝐒AK of Arone–

Kankaanrinta and 𝐒CS of Ching–Salvatore are weakly equivalent by constructing an operad
𝐖 and a zigzag of weak equivalences

𝐒AK
≃−→ 𝐖 ≃←− 𝐒CS.
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We combine the ideas of [AK14] and [CS22] to define the operad 𝐖. Let 𝐓 denote the

operad of [AK14, Definition 5.2], consisting of the spaces

𝐓(𝑛) ≔ { 𝑡 ∈ (0,∞)𝑛 | 1 ⩽ ‖𝑡‖1 and ‖𝑡‖∞ ⩽ 1 },

which contain the𝚫𝑝(𝑛) as a deformation retract for all 1 ⩽ 𝑝 ⩽ ∞. The partial composition

maps are defined by the formula (5) for those of 𝚫𝑝.

Definition 4.2 Define an operad 𝐕 by the spaces

𝐕(𝑛) ≔ 𝜌𝑛 × 𝐓(𝑛)

for 𝑛 ⩾ 1, with composition defined by formula (6).

Identifying 𝜌𝑛 with 𝐊(𝑛) via Lemma 4.1, it is straightforward to check that 𝐕 forms a

suboperad of the ‘overlapping discs operad’ 𝐏R of [CS22, Definition 2.5], which has terms

𝐏R(𝑛) = R𝑛 × (0,∞)𝑛 with partial composition maps given by formula (6). The projection

maps 𝐕(𝑛) = 𝜌𝑛 × 𝐓(𝑛) → 𝐓(𝑛) are trivial vector bundles with fibre 𝜌𝑛 = R𝑛/Δ, and
assemble into a map of operads 𝐕 → 𝐓. We wish to apply the Thom space construction

levelwise to this map to obtain a new operad; some care should be taken, as the Thom space

is only functorial with respect to fibrewise proper maps.

Lemma 4.3 The partial composition maps of 𝐕 are fibrewise proper maps of vector bundles.

Proof The fibres are finite-dimensional real vector spaces, so fibrewise properness is equiv-

alent to fibrewise injectivity, and thus to fibrewise vanishing of the kernel. Using the

isomorphism 𝐕(𝑛) ≅ 𝐊(𝑛) × 𝐓(𝑛) obtained from Lemma 4.1, let (𝑥, 𝑡) ∈ 𝐊(𝑛) × 𝐓(𝑛) and
(𝑦, 𝑢) ∈ 𝐊(𝑘) × 𝐓(𝑘), and assume (𝑥, 𝑡) +𝑖 (𝑦, 𝑢) = (0, 𝑡 ⋅𝑖 𝑢). We need to show that 𝑥 = 0
and 𝑦 = 0. By assumption, we have 𝑥 +𝑖 𝑡𝑦 = 0, so 𝑥𝑗 = 0 for 𝑗 ≠ 𝑖, and

𝑥𝑖 + 𝑡𝑖𝑦ℓ = 0

for all 1 ⩽ ℓ ⩽ 𝑘. From the definition of 𝐊, we have minℓ 𝑦ℓ = 0, so we can pick 𝑚 with

𝑦𝑚 = 0. By the equation above, we then find 𝑥𝑖 = 𝑥𝑖 + 𝑡𝑖𝑦𝑚 = 0. For any ℓ, we now see

that 𝑡𝑖𝑦ℓ = 𝑥𝑖 + 𝑡𝑖𝑦ℓ = 0, and since 𝑡𝑖 is positive, we have 𝑦ℓ = 0. We have now shown that

𝑥 = 0 and 𝑦 = 0, finishing the proof.

To define their sphere operads, Arone–Kankaanrinta depend on the fact that one-point

compactification is a symmetric monoidal functor from the category of locally compact

Hausdorff spaces and proper maps (equipped with the cartesian product) to the category

of pointed topological spaces with the smash product (see [AK14, § 4]). We will use

an analogous statement for the Thom space construction. For trivial real vector bundles

𝑉 × 𝑋 → 𝑋 and 𝑊 × 𝑌 → 𝑌 with locally compact Hausdorff bases, there is a canonical

homeomorphism

Th𝑉 ∧ Th𝑊 ≅ Th(𝑉 ⊕𝑊)

between the smash product of Thom spaces and the Thom space of the external direct sum

of 𝑉 and 𝑊, which is the cartesian product in the category of real vector bundles. Thus,

the Thom space is a symmetric monoidal functor from the category of trivial real vector

bundles with locally compact Hausdorff base and fibrewise proper maps to the category of

pointed topological spaces.
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Applying the Thom space construction levelwise to the operad 𝐕, we therefore obtain

an operad𝐖 of pointed spaces with terms

𝐖(𝑛) ≅ 𝑆𝜌𝑛 ∧ 𝐓(𝑛)+.

The operad𝐖 contains the Ching–Salvatore sphere operad 𝐒CS, which has terms 𝐒CS(𝑛) =
𝑆𝜌𝑛∧𝚫1(𝑛)+, as a suboperad. Moreover, since the subspaces𝚫1(𝑛) ↪ 𝐓(𝑛) are deformation

retracts, so are the subspaces 𝐒CS(𝑛) ↪ 𝐖(𝑛). In other words, we can see the operad𝐖
as a thickening of the Ching–Salvatore sphere operad 𝐒CS, via Arone–Kankaanrinta’s
thickening 𝐓 of the simplex operad 𝚫1. In particular, the inclusions assemble into a weak

equivalence of operads 𝐒CS
≃−→ 𝐖.

For the Arone–Kankaanrinta operad, we essentially exploit the fact that picking out

the elements (1,… , 1) defines a map of operads Com → 𝚫∞ (as observed in [AK14]).

We define a map 𝝆 → 𝐕 levelwise as the product of the identity of 𝝆 and the composite

Com → 𝚫∞ ↪ 𝐓. (However, this map is not the product in the category of operads;

although the symmetric sequence of 𝐕 is the product of those of 𝝆 and 𝐓, it is not the
product as operads.)

Lemma 4.4 The maps

𝜌𝑛 → 𝜌𝑛 × 𝐓(𝑛) = 𝐕(𝑛), 𝑥 ↦ (𝑥, (1,… , 1))

assemble into a map of operads 𝝆 → 𝐕 and induce a map of operads 𝐒AK → 𝐖 that is levelwise
an inclusion of deformation retracts. In particular, it is a weak equivalence.

Proof Denote the map 𝜌𝑛 → 𝜌𝑛 × 𝐓(𝑛) by 𝑖𝑛. It follows from the definitions that the

maps 𝑖𝑛 assemble into a map of operads 𝑖 ∶ 𝝆 → 𝐕. To see that this map induces a map

𝐒AK → 𝐖, observe that we can view 𝐒AK(𝑛) = 𝑆𝜌𝑛 as the Thom space of the trivial

vector bundle 𝜌𝑛 → pt over the point. The map 𝑖𝑛 is a map of vector bundles over the

map pt → 𝐓(𝑛) picking out the element (1,… , 1), and it is fibrewise injective and an

inclusion of a deformation retract. Hence, we obtain a map of operads 𝐒AK = 𝐒𝝆 → 𝐖
that is levelwise an inclusion of a deformation retract, and thus a weak equivalence.

We now have a zigzag of weak equivalences

𝐒AK
≃−→ 𝐖 ≃←− 𝐒CS

connecting the Arone–Kankaanrinta and Ching–Salvatore sphere operads, and conclude

therefore:

Theorem 4.5 The Arone–Kankaanrinta sphere operad 𝐒AK and the Ching–Salvatore sphere operad
𝐒CS are weakly equivalent.

4.2 Characterising unstable operadic suspension

In § 3, we discussed two potential approaches to characterising operadic suspension in

the stable case: via the suspension morphism, and via invertibility for the levelwise tensor

product. We briefly comment here on the feasibility of these approaches for characterising

unstable operadic suspension.

For the unstable case, we have to rule out the latter approach via invertibility: in the

symmetric monoidal∞-category of pointed spaces with smash product, the only invertible
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object is the monoidal unit 𝑆0. The sphere operad 𝐒 (Theorem 4.5 allows us to use either

model), the unstable analogue of 𝐬E∞ = End(S−1), has terms 𝐒(𝑛) ≃ 𝑆𝑛−1 and is thus not

invertible with respect to the levelwise smash product. The approach suggested in § 3.3,

characterising 𝐬E∞ as a generator of the Picard group of nonunital operads, therefore is not

feasible for characterising the sphere operad in the unstable case.

There is more hope for the approach via property ∗© of the suspension morphism, as

suggested by Heuts–Land [HL24], although the unstable situation is more complicated.

As in the stable case, a reduced monad 𝑇 on a pointed C induces a suspension morphism

𝜎𝑇 ∶ 𝑇 → Ω𝑇Σ, and by applying this construction to the reduced monad free𝐎 associated

to a nonunital operad 𝐎 in C, we obtain a map free𝐎 → Ωfree𝐎Σ.
As in the stable case, we would like to say that this map comes from an operadic

suspension morphism 𝜎 ∶ 𝐎 → 𝐬𝐎, induced by a map E∞ → 𝐒 to the sphere operad given

by Euler classes 𝑆0 → 𝑆𝜌𝑛 . Unstably, however, the monadΩfree𝐨Σ need not be equivalent

to free𝐬𝐎. The unstable analogue of property ∗© that should characterise a suspension

morphism 𝜎 ∶ 𝐎 → 𝐬𝐎 now reads (following [HL24, property (F)]):

∗©′ There is a canonical equivalence Σfree𝐬𝐎 ≃ free𝐎Σ in End(C). The adjoint map

free𝐬𝐎 → Ωfree𝐎Σ refines to a map of monads making the diagram of monads

free𝐎

free𝐬𝐎 Ωfree𝐎Σ

𝜎free𝐎free𝜎

commute.

Note that the horizontal map in the diagram is no longer an equivalence in the unstable

case, so commutativity of the diagram does not imply an equivalence between the maps

of monads free𝜎 and 𝜎free𝐎 . This means it will be even less straightforward to see that

property ∗©′ is characterising: where in the stable case we would obtain an equivalence

free𝜎 ≃ free𝜎′ for two suspension morphisms 𝜎 and 𝜎′ (see Remark 3.8), which under some

assumptions we could lift to an equivalence 𝜎 ≃ 𝜎′ (for instance for the E𝑛-operads if

their suspensions have nilpotent Euler classes), such an argument does not obviously work

unstably.
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