Equivariant homotopy theory via orbits

Final presentation

Splinter Suidman

28 June 2023

Radboud University

supervisor: Dr Magdalena Kędziorek

Project overview

- Erdal & Güçlükan İlhan (2019),
 'A model structure via orbit spaces for equivariant homotopy'
- Algebraic topology
- Category theory

Outline

Category theory

Homotopy theory of spaces

Abstract homotopy theory

Equivariant homotopy theory

Outline

Category theory

Homotopy theory of spaces

Abstract homotopy theory

Equivariant homotopy theory

Category theory

- · 'Abstract nonsense'
- · Mac Lane & Eilenberg, 1945
- Algebraic topology

Categories

- **Objects** *X*, *Y*, *Z*, ...
- Maps (or morphisms) f, g, h, ... between objects
- Identity maps: $id_X : X \to X$
- · Composition:

 \cdot Composition associative and id_X identities

5

Categories: examples

category	objects	maps		
Set	sets	functions		
Grp	groups	group homomorphisms		
Тор	topological spaces	continuous maps		
Top _*	topological spaces	basepoint-preserving		
	with basepoint	continuous maps		
If G is a group:				
BG	single object	group elements $g \in G$		

Categorically: products

- · In Set: Cartesian product
- In **Grp**: direct product
- In Top: product topology
- · 'Abstract nonsense'
 - $\cdot X \times Y \cong Y \times X$
- Example of a limit

Duality

- A category C has an **opposite category** Cop:
 - · objects: same as C
 - map $f^{op}: Y \to X$ if $f: X \to Y$ in \mathfrak{C}

$$\begin{array}{ccc} X & & X \\ \mathbb{C} \ni f & & & \\ Y & & Y \end{array}$$

· Theorems in category theory have **dual** versions

Functors: maps of categories

- Functor $F: \mathcal{C} \to \mathfrak{D}$:
 - object X of $\mathcal{C} \stackrel{F}{\mapsto}$ object F(X) of \mathcal{D}
 - map $f: X \to Y$ in $\mathcal{C} \stackrel{F}{\mapsto} \text{map } F(f): F(X) \to F(Y)$ of \mathcal{D}
 - preserving identity maps and composition
- Examples:
 - \cdot Forgetful functors $\mathbf{Grp} \to \mathbf{Set}$, $\mathbf{Top} \to \mathbf{Set}$, ...
 - Free functors $\mathbf{Set} \to \mathbf{Grp}, \, \mathbf{Set} \to \mathbf{Top}, \, ...$
 - Fundamental group $\pi_1 : \mathbf{Top}_* \to \mathbf{Grp}, (X, X) \mapsto \pi_1(X, X),$ $f: X \to Y \mapsto f_* : \pi_1(X, X) \to \pi_1(Y, f(X))$
- Category Cat of categories with functors as maps

Outline

Category theory

Homotopy theory of spaces

Abstract homotopy theory

Equivariant homotopy theory

Homotopy theory

- Category HoTop of topological spaces and maps up to homotopy
- Recall: **homotopy** between $f, g: X \to Y$ is a map $H: X \times [0,1] \to Y$ with H(-,0) = f and H(-,1) = g

$$X \xrightarrow{g} Y$$

- · Isomorphisms:
 - **Top**: homeomorphisms
 - Ho Top: homotopy equivalences (inverse up to homotopy)
- Importance of maps in categories

Topology vs homotopy theory

- Topology: If $f: X \to Y$ is a homeomorphism and $x \in X$, then $X \setminus \{x\} \cong Y \setminus \{f(x)\} \in \mathsf{Top}$
- · Homotopy theory: in Ho Top,

Removing a point is a topological but not a homotopical operation

Homotopy invariants

- Fundamental group π₁: Top_{*} → Grp is a homotopy invariant: homotopy equivalent spaces have isomorphic fundamental groups
- Alternatively: functor π_1 factors through **Ho Top**_{*}:

Outline

Category theory

Homotopy theory of spaces

Abstract homotopy theory

Equivariant homotopy theory

Abstract homotopy theory

- · Homotopy in different categories than **Top**
- Here: equivariant homotopy, of spaces with symmetries

Model structures

- Abstract homotopy theory
 - Category C with class of maps: weak equivalences resembling isomorphisms
 - · Idea: formally invert weak equivalences of ${\mathfrak C}$
- Solution (Quillen, 1967): *model structure* on C, with classes of maps of C:
 - · weak equivalences
 - fibrations
 - cofibrations
 - · ... satisfying certain axioms
- · Homotopy category **Ho** C

Model structures: axioms

· Factorisation:

· Lifting:

Duality in model categories

• Axioms are **self-dual**: model structure on $\mathcal{C} \leadsto \text{model}$ structure on \mathcal{C}^{op} :

```
\begin{array}{cccc} & & & & & & & & & \\ f^{op} \text{ weak equivalence} & & & & & f \text{ weak equivalence} \\ & f^{op} \text{ cofibration} & & & & & f \text{ fibration} \\ & f^{op} \text{ fibration} & & & & & f \text{ cofibration} \\ \end{array}
```

- Theorems about model categories have dual versions
- Example: f cofibration \iff f has left-lifting property w.r.t. fibrations & weak equivalences

• Dual: f fibration \iff f has right-lifting property w.r.t. cofibrations & weak equivalences

Examples of model categories

category	weak equivalences	cofibrations	fibrations	
any	isomorphisms	all maps	all maps	
Set	all maps	surjective	injective	
Top (Strøm)	homotopy equiv.		Hurewicz fib.	
(Strøm (1972), 'The homotopy category is a homotopy category')				
Top (Quillen)	weak homotopy equiv.		Serre fib.	

Homotopy category

- \cdot Homotopy category Ho $\operatorname{\mathcal{C}}$ of model category $\operatorname{\mathcal{C}}$
- Functor $\gamma: \mathcal{C} \to \mathbf{Ho} \, \mathcal{C}$ inverting weak equivalences
- If $F: \mathcal{C} \to \mathcal{D}$ takes weak equivalences to isomorphisms (F is homotopical):

Outline

Category theory

Homotopy theory of spaces

Abstract homotopy theory

Equivariant homotopy theory

Equivariant homotopy theory

- Homotopy theory of spaces (objects) with symmetries
- Group actions
- Model category of spaces with group actions

Group actions

- G-action of object X in category C:
 - A map $g_*: X \to X$ for all $g \in G$
 - ... with $(g \cdot h)_* = g_* \circ h_*$ for all $g, h \in G$
 - ... and $e_* = id_X$
- G-equivariant map: map $f: X \to Y$ in \mathcal{C} that commutes with G-actions of X and Y:

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
g_* \downarrow & & \downarrow g_* \\
X & \xrightarrow{f} & Y
\end{array}$$

- · Category GC of G-objects in C and equivariant maps
- · Categorically:

$$G$$
-objects in \mathfrak{C} \iff functors $\mathbf{B}G \to \mathfrak{C}$ equivariant maps \iff natural transformations

Fixed points and orbits

- For a G-set X:
 - Fixed-point set $X^G = \{ x \in X \mid g_*(x) = x \ \forall g \in G \}$
 - Orbit set $X_G = X/\sim_G$ with $g_*(x) \sim_G x$
- For a G-space X:
 - **Fixed-point space**: subspace $X^G \hookrightarrow X$
 - Orbit space: quotient space X_G/\sim_G
- Generally: in a category C:
 - Fixed-point object: limit (when it exists)
 - Orbit object: colimit (when it exists)
 - Functors $(-)^G : G\mathcal{C} \to \mathcal{C}$ and $(-)_G : G\mathcal{C} \to \mathcal{C}$
 - Equivariant $f:X \to Y$ induces $f^G:X^G \to Y^G$ and $f_G:X_G \to Y_G$

Group actions on spaces

- · X: $C_2 = \mathbb{Z}/2\mathbb{Z}$ acting on S^1 by 180° rotation
 - Fixed-point space $X^{C_2} = \emptyset$
 - Orbit space $X_{C_2} \cong S^1$
- Y: C_2 acting on S^1 by reflection
 - Fixed-point space
 Y^{C2} = {north pole} ⊔ {south pole}
 - · Orbit space $Y_{C_2}\cong [0,1]$
- Equivariant maps preserve fixed points, so no equivariant map $Y \rightarrow X$

Equivariant homotopy theory: traditionally

- · Homotopy of G-spaces (G finite): model structure on GTop
- A map $f: X \to Y$ in **GTop** is:
 - weak equivalence if $f^H: X^H \to Y^H$ weak equivalence in **Top** for all subgroups H of G
 - fibration if $f^H: X^H \to Y^H$ fibration in **Top** for all subgroups H
 - · cofibration if it has the required lifting property
- Weak equivalences and fibrations are created by fixed-point functors (−)^H: GTop → Top

Equivariant homotopy theory: example

- C_2 acting on D^2 by 180° rotation around centre
- Unique equivariant map $f: D^2 \rightarrow \bullet$
 - $f^e = f: (D^2)^e = D^2 \rightarrow \bullet^e = \bullet$ weak equivalence
 - $f^{C_2} = id_{\bullet} : (D^2)^{C_2} = \bullet \rightarrow \bullet^{C_2} = \bullet$ weak equivalence
 - So: f is a weak equivalence in C_2 **Top**
 - In **Ho** C_2 **Top**: $D^2 \cong \bullet$

Equivariant homotopy theory: via orbits

- · Want: dual model structure on GTop, via orbits
- A map $f: X \to Y$ in $GTop_{orbits}$ is:
 - weak equivalence if $f_H: X_H \to Y_H$ weak equivalence in **Top** for all subgroups H of G
 - cofibration if $f_H: X_H \to Y_H$ cofibration in **Top** for all subgroups H
 - fibration if it has the required lifting property

Orbits: example

- C_2 acting on D^2 by 180° rotation around centre
- Unique equivariant map $f: D^2 \rightarrow \bullet$
 - $f_e = f: (D^2)_e = D^2 \rightarrow \bullet_e = \bullet$ weak equivalence
 - $f_{C_2}=f:(D^2)_{C_2}\cong D^2\to ullet_{C_2}=ullet$ weak equivalence
 - · So: f would be a weak equivalence in C_2 **Top**_{orbits}
 - In **Ho** C_2 **Top**_{orbits}: $D^2 \cong \bullet$

Model structure via orbits

• Model structure *GTop*_{fixed points} is **right-induced**:

orbit diagrams
$$\xrightarrow{\perp \atop R}$$
 $GTop_{fixed\ points}$

- Equivalence of homotopy categories (Elmendorf, 1983)
- Idea: left-induce model structure GTop_{orbits} (Erdal & Güçlükan İlhan, 2019):

$$GTop_{orbits} \xrightarrow{\underline{L}} orbit diagrams$$

- Left-inducing technically more involved (Hess, Kędziorek, Riehl & Shipley, 2017)
- 'Nice' category of spaces: simplicial sets $(Ho sSet \simeq Ho Top)$
- No equivalence of homotopy categories

Conclusion

- Duality in (model) categories
- · Model structure via orbits possible, but harder
- Failure of duality

