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« La parole a été donnée à l’homme
pour cacher sa pensée. »

Stendhal, Le rouge et le noir (1830)

This note serves as a translation of the paper ‘Le théorème de Quillen, d’adjonction
des foncteurs dérivés, revisité’ by Maltsiniotis (2007) in two ways. Firstly, as its title
may suggest, the paper is written in French, whereas the note lying before you is
not. Secondly, the proof of the main theorem of the paper (which we will discuss
momentarily) is finished by some tedious and hard-to-parse symbol pushing, reasoning
about 2-morphisms (natural transformations) in the 2-category of categories. Although
it is not impossible to decipher the algebraic manipulations, there is little insight
gained from this in our opinion, so a diagrammatic notation could be favourable.

String diagrams offer an alternative, more graphical notation for 2-morphisms in
2-categories, whichmightmake reasoning about them easier, quicker or more intuitive.
For the author, the goal of writing this note is to get acquainted with string diagrams,
and to see whether they provide any benefits in a ‘real-world’ case (if your real world
contains e.g. model categories) where it seems any alternative notational system should
be better than the conventional symbolic notation. To become acquainted with string
diagrams, the author used the book Introducing String Diagrams by Hinze and Marsden
(2023) and a tutorial to make string diagrams in LATEX using TikZ by the same authors1.

The theoremwe set out to reprove using the language of string diagrams is rather ab-
stract, so let us for now discuss the main application in the context of model categories2.
Recall that a Quillen adjunction is an adjunction 𝐹 ⊣ 𝑈 of functors 𝐹 ∶ M ⇄ N ∶ 𝑈
between model categories where 𝐹 is a left Quillen functor, a functor that preserves cofi-
brations, trivial cofibrations and cofibrant objects (or, equivalently, 𝑈 is a right Quillen
functor, which preserves the fibrational data). Given a Quillen adjunction 𝐹 ⊣ 𝑈, we
can construct total derived functors L𝐹 ∶ Ho(M) ⇄ Ho(N) ∶ R𝑈 between the homotopy

1Available from https://stringdiagramcom.files.wordpress.com/2023/11/howtodrawv0.4.pdf.
2We will not be very precise about our conventions about model categories, such as whether we

assume functorial factorisations or not, since we will take for instance the existence of derived functors
under the usual hypotheses for granted. For an introduction to model categories, we recommend Dwyer
and Spaliński (1995) or Riehl (2022); the latter is more modern and its conventions are closer to ours
than the former’s. In particular, Riehl refers to Maltsiniotis (2007) for the proof of the derived adjunction.
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categories ofMandN, whose universal property is that they are certain Kan extensions
of 𝐹 and 𝑈.

The main theorem of Maltsiniotis (2007) shows that these total derived functors
again form an adjunction L𝐹 ⊣ R𝑈 at the level of homotopy categories. This result
is traditionally proven using the details of the specific construction of the homotopy
category; this is the case for all of the following standard accounts: Dwyer, Hirschhorn,
et al. (2005), Dwyer and Spaliński (1995), Hirschhorn (2003), Hovey (2007), May and
Ponto (2012), and Quillen (1967). Using the fact that the total derived functors are
absolute Kan extensions, however, Maltsiniotis (2007) shows that the derived adjunction
can be proven using abstract nonsense, from the universal properties.

For the statement of the theorem, we abstract away from model categories by con-
sidering arbitrary localisations and derived functors with respect to those localisations.

This note is organised as follows: § 1 records what adjunctions and Kan extensions
look like using string diagrams; § 2 introduces the necessary definitions to be able to
speak of total derived functors; and finally, the theorem is proven using string diagrams
in § 3.

1 Adjunctions and Kan extensions in string diagrams

This note is not meant to be an introduction to string diagrams, but for the unexperi-
enced user of string diagrams (such as the author at the time of writing), we record
some basic string-diagrammatic equations that we will need in the proof of Theo-
rem 3.1. Specifically, we will need to reason about adjunctions, Kan extensions, and
also absolute Kan extensions.

Adjunctions String diagrams for adjunctions are rather intuitive. An adjunction

C D
𝐹

𝑈

⊣

is specified by natural transformations 𝜂 ∶ idC ⇒ 𝑈𝐹, the unit, and 𝜀 ∶ 𝐹𝑈 ⇒ idD, the
counit, satisfying the triangle identities3:

𝐹

𝜂

𝜀

𝐹

𝑈 =

𝐹

𝑈

𝜂

𝜀

𝑈

𝐹 =

𝑈

Geometrically, the triangle identities mean we can straighten a wiggly string which
passes consecutively the unit and counit.

3This name refers to the shape of commutative diagrams, but one would be hard-pressed to recognise
a triangle in the corresponding string diagrams.
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Kan extensions A left Kan extension of a functor 𝐹 ∶ C→ Ealong a functor𝐾 ∶ C→ D

is a functor Lan𝐾 𝐹 ∶ D→ Ewith a natural transformation 𝜂 ∶ 𝐹 ⇒ Lan𝐾 𝐹 ∘ 𝐾 such
that for any pair of a functor 𝐺 ∶ D→ E and a natural transformation 𝛼 ∶ 𝐹 ⇒ 𝐺𝐾,
the transformation 𝛼 factors uniquely through 𝜂 as in the following string diagrams:

𝐹

𝜂

Lan𝐾 𝐹 𝐾

𝐹

∀

𝐺 𝐾

=

𝐹

𝜂
∃!

𝐺 𝐾

The left Kan extension Lan𝐾 𝐹 is absolute if for any functor 𝐻 ∶ E→ F, the com-
posite functor 𝐻 Lan𝐾 𝐹 ∶ D→ F together with the whiskered transformation 𝐻𝜂 is
a left Kan extension of 𝐻𝐹 along 𝐾. Spelling out the definition, this means that for
any pair of a functor 𝐺 ∶ D → F and a natural transformation 𝛼 ∶ 𝐻𝐹 ⇒ 𝐺𝐾, the
transformation 𝛼 factors uniquely through 𝐻𝜂:

𝐻

Lan𝐾 𝐹 𝐾

𝐹

𝜂

𝐻

𝐺 𝐾

𝐹

∀ =

𝐻

𝐺 𝐾

𝐹

∃!
𝜂

Dually, the corresponding diagrams for right Kan extensions Ran𝐾 𝐹 ∶ D→ E of
𝐹 ∶ C→ Ealong 𝐾 ∶ C→ D are:

𝐹

𝜀

Ran𝐾 𝐹 𝐾

𝐹

∀

𝐺 𝐾

=

𝐹

𝜀∃!

𝐺 𝐾

and absolute right Kan extensions look as follows:

𝐻

Ran𝐾 𝐹 𝐾

𝐹

𝜀

𝐻

𝐺 𝐾

𝐹

∀ =

𝐻

𝐺 𝐾

𝐹

∃!
𝜀

2 Localisations and derived functors

In this section, we introduce the definitions necessary for the statement of Theorem 3.1.
Our treatment of localisations differs slightly from Maltsiniotis (2007): all our cate-
gories are assumed to be locally small (meaning that there is only a set of maps between
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any two objects), so the localisation of a category with respect to a class of maps need
not exist in our universe. Maltsiniotis (2007) also restricts to locally small localisations,
but using another linguistic trick: by speaking of localisateurs, which are defined to
be pairs of a category C and a class of maps 𝑆 such that the localisation of Cwith
respect to 𝑆 is locally small4. (Of course, these size problems are addressed by model
categories.)

definition 2.1 ⋅A localisation of a category Cwith respect to a class of maps 𝑆 is a
category C[𝑆−1] together with a functor 𝛾 ∶ C→ C[𝑆−1] taking maps in 𝑆 to isomor-
phisms in C[𝑆−1] such that any functor 𝐹 ∶ C→ D taking maps in 𝑆 to isomorphisms
in D factors uniquely through 𝛾:

C D

C[𝑆−1]

𝛾

𝐹

∃!

In other words, such a functor 𝛾 defines a localisation of Cwith respect to 𝑆 if it is
initial among the functors out of C taking maps in 𝑆 to isomorphisms.

examples 2.2 ⋅The homotopy categoryHo(M) of amodel categoryMis the localisation
ofMwith respect to the class of weak equivalences in M. The derived category D(A)
of an abelian category A is the localisation of the category Ch(A) of chain complexes
with respect to the class of quasi-isomorphisms.

definition 2.3 ⋅ Let Cbe a category with a class of maps 𝑆, suppose 𝛾 ∶ C→ C[𝑆−1]
is a localisation of Cwith respect to 𝑆, and let 𝐹 ∶ C→ Dbe a functor. Then a left derived
functor of 𝐹 is a right Kan extension of 𝐹 along 𝛾, denoted L𝐹 ∶ C[𝑆−1] → D. Dually, a
right derived functor of 𝐹 is a left Kan extension of 𝐹 along 𝛾, denoted R𝐹 ∶ C[𝑆−1] → D.
A left or right derived functor is absolute if it is an absolute Kan extension.

remark 2.4 ⋅Especially in the literature on model categories, the terminology of
derived functors is unfortunately rather inconsistent: read three different sources, and
you will encounter four (subtly) different ideas of what a derived functor is supposed
to be. Here we are exclusively interested in what we call absolute derived functors, but
we do not incorporate absoluteness in the definition of derived functors to stress the
requirement of this hypothesis for the proof of the theorem.

example 2.5 ⋅A functor 𝐹 ∶ M→ C from a model category to any category taking
weak equivalences between cofibrant objects to isomorphisms has an absolute left
derived functor (with respect to the localisation M→ Ho(M)) given by precomposing
𝐹 with cofibrant replacement (see for example Riehl 2014, Theorem 2.2.8); there is an
obvious dual statement for right derived functors.

definition 2.6 ⋅ Let C and D be categories with classes 𝑆 of maps in C and 𝑇
of maps in D, suppose 𝛾 ∶ C→ C[𝑆−1] is a localisation of Cwith respect to 𝑆 and
𝛿 ∶ D → D[𝑇−1] is a localisation of D with respect to 𝑇, and let 𝐹 ∶ C → D be a
functor. Then a total left derived functor of 𝐹 is a left derived functor of the composite

4Here we should probably be a bit more careful by demanding the localisation to be essentially locally
small.
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𝛿𝐹, denoted L𝐹 ∶ C[𝑆−1] → D[𝑇−1]. Dually, a total right derived functor of 𝐹 is a right
derived functor of the composite 𝛿𝐹, denoted L𝐹 ∶ C[𝑆−1] → D[𝑇−1]. A total left or
right derived functor is absolute if it is an absolute derived functor.

example 2.7 ⋅ If 𝐹 ∶ M → N is a functor between model categories taking weak
equivalences between cofibrant objects inM to weak equivalences inN, then it has an
absolute total left derived functor, which follows from Example 2.5; again, there is a
dual statement for total right derived functors. By Ken Brown’s lemma (Riehl 2014,
Lemma 11.3.14), it suffices for 𝐹 to be a left Quillen functor, meaning that it preserves
cofibrations, trivial cofibrations and cofibrant objects, for the absolute total left derived
functor to exist.

3 Derived adjunction

We are now ready to state and prove the theorem.

theorem 3.1 ⋅ Let Cand D be categories with classes 𝑆 of maps in Cand 𝑇 of maps in D

and suppose 𝛾 ∶ C→ C[𝑆−1] is a localisation of Cwith respect to 𝑆 and 𝛿 ∶ D→ D[𝑇−1]
is a localisation of Dwith respect to 𝑇. Let

C D
𝐹

𝑈

⊣

be an adjunction between C and D with unit 𝜂 and counit 𝜀. Suppose that 𝐹 and 𝑈
admit respectively absolute total left and right derived functors L𝐹 ∶ C[𝑆−1] → D[𝑇−1] and
R𝑈 ∶ D[𝑇−1] → C[𝑆−1] with natural transformations

𝜆
L𝐹 𝛾

𝛿 𝐹

𝜌
𝛾 𝑈

R𝑈 𝛿

Then the total derived functors from an adjunction

C[𝑆−1] D[𝑇−1]
L𝐹

R𝑈

⊣

with unit �̃� and counit ̃𝜀 satisfying the following equations:

𝛾

R𝑈

𝜆

𝛿

�̃�

𝐹

L𝐹 =

𝛾

R𝑈

𝜌

𝛿

𝜂

𝐹

𝑈

L𝐹 𝛾 𝑈

𝜌

̃𝜀
𝛿

R𝑈 = 𝐹

L𝐹 𝛾 𝑈

𝜀

𝜆

𝛿

𝐹

proof. Since the absolute total left derived functor L𝐹 is an absolute right Kan exten-
sion of 𝛿𝐹 along 𝛾, the composite R𝑈 ∘ L𝐹 together with R𝑈𝜆 is a right Kan extension
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of R𝑈𝛿𝐹 along 𝛾. We obtain the unit �̃� of the derived adjunction from the universal
property of this Kan extension as the unique natural transformation satisfying:

𝛾

R𝑈

𝜌

𝛿

𝜂

𝐹

𝑈 =

id 𝛾

R𝑈
𝜌

𝛿

𝜂

𝐹

𝑈 =

id 𝛾

R𝑈

𝜆

𝛿

∃!�̃�

𝐹

=

𝛾

R𝑈

𝜆

𝛿

�̃�

𝐹

L𝐹

Dually, we obtain the counit ̃𝜀 satisfying the desired equation.
To show that the unit �̃� and counit ̃𝜀 assemble into an adjunction, it remains to

show the triangle identities:

L𝐹

�̃�

̃𝜀

L𝐹

R𝑈 =

L𝐹

R𝑈

�̃�

̃𝜀

R𝑈

L𝐹 =

R𝑈

We only prove the latter; the former is dual. By the universal property of R𝑈 as a left
Kan extension of 𝛾𝑈 along 𝛿:

𝜌
𝛾 𝑈

R𝑈 𝛿

=
𝜌

∃!

𝛾 𝑈

R𝑈 𝛿

it suffices to show this equation holds when precomposed with 𝜌 (and appropriately
whiskered). This is now proven using the established equations. The first step follows
from naturality of �̃�:

𝛾 𝑈

R𝑈 𝛿

�̃�

̃𝜀

𝜌

L𝐹

R𝑈 =

𝛾 𝑈

R𝑈 𝛿

�̃�

̃𝜀

𝜌
L𝐹

R𝑈
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We can now apply the defining equation of ̃𝜀:

=

𝛾 𝑈

R𝑈

�̃�

𝜆

𝜀

𝛿

𝐹

L𝐹

Then we can apply the defining equation of �̃�:

=
𝑈

𝐹

𝛾

𝜌

R𝑈 𝛿

𝜂

𝜀

𝑈

𝑈
𝐹

Using naturality of 𝜌 we can move 𝜀 up:

=
𝑈 𝐹

𝛾

𝜌

R𝑈 𝛿

𝜂

𝜀

𝑈

𝑈 𝐹

Finally, we apply one of the triangle identities of the adjunction 𝐹 ⊣ 𝑈:

=
𝜌

𝛾 𝑈

R𝑈 𝛿

This finishes the proof of the derived adjunction L𝐹 ⊣ R𝑈.

exercise ⋅Use string diagrams to obtain the counit ̃𝜀 and prove the other triangle
identity.

corollary 3.2 ⋅ Let 𝐹 ⊣ 𝑈 be a Quillen adjunction of functors 𝐹 ∶ M⇄ N ∶ 𝑈 between
model categories. Then the total derived functors form an adjunction

Ho(M) Ho(N)
L𝐹

R𝑈

⊣

between the homotopy categories of M andN.
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