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In this week’s lecture, we will discuss Čech cohomology, a tool for computing
sheaf cohomology via covering families. For a covering family U of an object 𝑋 of
a site, we will define a simplicial presheaf �̌�U, called the Čech nerve of U, which
should be a simplicial (and thus ‘combinatorial’) approximation of 𝑋. We define
Čech cohomology of U as the simplicial cohomology of the Čech nerve �̌�U. If the
cover U is in some sense well-behaved, this will compute the sheaf cohomology of
𝑋. More generally, we can take the colimit over all covers U, and this will compute
sheaf cohomology in some more cases, such as for paracompact Hausdorff spaces
or for quasi-coherent sheaves on Noetherian separated schemes with the Zariski
topology.

Throughout, we let (C, 𝐽) be a site and we assume that Chas pullbacks. Then
the slice category C/𝑋 over any object 𝑋 ∈ C has products, which are given as
pullbacks over 𝑋 in C. In particular, Cmay be the poset of open subsets of a
topological space 𝑋 with its usual Grothendieck topology, where pullbacks are
intersections. We write E = Sh(C, 𝐽) and P = PSh(C) for the corresponding
categories of sheaves and presheaves, and denote the canonical embedding E↪ P

by 𝑖.
Recall from Lecture 8:

• Sheaf cohomology𝐻𝑛(E, −) of E is the 𝑛th right derived functor of the global
sections functor Γ = HomAb(E)(Z, −).

• For any sheaf of abelian groups F ∈ Ab(E), we write 𝐻𝑛(F, −) for the 𝑛th
right derived functor of HomAb(E)(F, −). In particular, for an object 𝑋 of C,
we write 𝐻𝑛(𝑋, −) for 𝐻𝑛(Z[𝑖∗ y𝑋], −); by the Yoneda lemma, this is the 𝑛th
right derived functor of the evaluation functor Γ(𝑋, −) ∶ G↦ G(𝑋).

The exposition here is mostly based on [Joh77, § 8.2].

Notation For a family of maps {𝑈𝑖 → 𝑋}𝑖∈𝐼 in C and a sequence 𝑖 = (𝑖0,… , 𝑖𝑛) of
elements of 𝐼, we write

𝑈𝑖 = 𝑈𝑖0,…,𝑖𝑛 ≔ 𝑈𝑖0 ×𝑋 ⋯×
𝑋
𝑈𝑖𝑛
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for the pullback of the maps 𝑈𝑖𝑘 → 𝑈. For topological spaces, this is the union

𝑈𝑖 = 𝑈𝑖0,…,𝑖𝑛 = 𝑈𝑖0 ∩⋯∩𝑈𝑖𝑛.

Note that pullbacks are commutative (up to isomorphism), so 𝑈𝑖 ≅ 𝑈𝜎⋅𝑖 for any
permutation 𝜎 ∈ Σ𝑛+1.

1 Čech cohomology of families

We first describe some general constructions we will need. Some of these appear,
sometimes in more generality, in the ‘Simplicial cheat-sheet’1.

Construction 1.1 Let 𝜄 ∶ 𝚫 ↪ Set denote the non-full inclusion; this is a cosimplicial
object in Set. It induces a functor 𝜄∗ ∶ Set → sSet, sending a set 𝑆 to the simplicial
set 𝑆× ≔ 𝜄∗𝑆 defined by [𝑛] ↦ HomSet([𝑛], 𝑆).2 The 𝑛-simplices are thus

𝑆×
𝑛 = HomSet([𝑛], 𝑆) ≅ 𝑆𝑛+1,

and under this isomorphism, the face and degeneracy maps are given by

𝑑𝑘(𝑥0,… , 𝑥𝑛) = (𝑥0,… , ̂𝑥𝑘,… , 𝑥𝑛) and 𝑠𝑘(𝑥0,… , 𝑥𝑛) = (𝑥0,… , 𝑥𝑘, 𝑥𝑘,… , 𝑥𝑛).

Construction 1.2 Let U = {𝑈𝑖 → 𝑋}𝑖∈𝐼 be a family of maps in Cwith codomain 𝑋.
We define the Čech nerve �̌�Uof U to be the simplicial object inPwith 𝑛-simplices

(�̌�U)𝑛 ≔ ∐
𝑖∈𝐼×𝑛

y𝑈𝑖

and with structure maps induced by those of 𝐼× (the simplicial set of Construc-
tion 1.1).

Construction 1.3 Let 𝑋 be a simplicial object in an abelian category A. We define its
alternating face map complex 𝐶•𝑋 as the chain complex with 𝐶𝑛𝑋 ≔ 𝑋𝑛 and with
differential 𝜕𝑛 ≔ ∑𝑛

𝑘=0(−1)
𝑘𝑑𝑘. It follows from the simplicial identities that this is

a chain complex, i.e., that 𝜕2 = 0. This defines a functor 𝐶• ∶ sA→ Ch⩾0(A).3

Definition 1.4 Let U = {𝑈𝑖 → 𝑋}𝑖∈𝐼 be a family of maps in Cwith codomain 𝑋.
Define the nerve complex 𝑁•(U) in Ab(P) as

𝑁•(U) ≔ 𝐶•(Z[�̌�U]),

the alternating face map complex of free abelian group object of the nerve of U. It
is the image of the nerve �̌�Uunder the composite

sP
Z[−]
−−−→ sAb(P)

𝐶•−−→ Ch⩾0(Ab(P)).

The 𝑛th term in the nerve complex is

𝑁𝑛(U) = ⨁
𝑖∈𝐼𝑛+1

Z[y𝑈𝑖
].

1Available at https://leoguetta.github.io/simp.pdf.
2This is an application of 1.8 of the ‘Simplicial cheat-sheet’. The notation 𝑆× is nonstandard.
3This is 2.1 of the ‘Simplicial cheat-sheet’. For a topological space, the alternating face map

complex of the singular simplicial set Sing𝑋 (see Example 1.10 of the ‘Simplicial cheat-sheet’) is the
singular complex of 𝑋, and its homology and cohomology are singular homology and cohomology.
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Lemma 1.5 The sequence … → 𝑁1(U) → 𝑁0(U) is exact in Ab(P).

Proof Exactness inAb(P) is pointwise, so it suffices to prove that𝑁•(U)(𝑉) is exact
in Ab for all 𝑉 ∈ C. The 𝑛th term 𝑁𝑛(U)(𝑉) is the free abelian group generated by
∐𝑖∈𝐼𝑛+1 C(𝑉,𝑈𝑖). We have isomorphisms

∐
𝑖∈𝐼𝑛+1

C(𝑉,𝑈𝑖) ≅ ∐
𝑖∈𝐼𝑛+1

C(𝑉,𝑈𝑖0) ×
C(𝑉,𝑋)

… ×
C(𝑉,𝑋)

C(𝑉,𝑈𝑖𝑛)

≅ ∐
𝑓∈C(𝑉,𝑋)

∐
𝑖∈𝐼𝑛+1

C/𝑋(𝑉,𝑈𝑖0) ×⋯ × C/𝑋(𝑉,𝑈𝑖𝑛)

≅ ∐
𝑓∈C(𝑉,𝑋)

(∐
𝑖∈𝐼

C/𝑋(𝑉,𝑈𝑖)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆𝑓≔

)
𝑛+1

≅ ∐
𝑓∈C(𝑉,𝑋)

𝑆𝑛+1
𝑓 .

It now suffices to prove that a sequence of the form

… → Z[𝑆3] → Z[𝑆2] → Z[𝑆]

is exact; this is the alternating face map complex associated to the simplicial set 𝑆×.
This is clear if 𝑆 is empty; otherwise, we can choose an element 𝑡 ∈ 𝑆 and define a
contracting homotopy by the maps

Z[𝑆𝑛] → Z[𝑆𝑛+1], (𝑠1,… , 𝑠𝑛) ↦ (𝑡, 𝑠1,… , 𝑠𝑛).

Construction 1.6 Let 𝐶• be a chain complex in an abelian category Aand let 𝐴 be an
object of A. Applying the (additive) hom-functorHomA(−, 𝐴) levelwise, we obtain
a cochain complex 𝐶•

𝐴 of abelian groups with

𝐶𝑛
𝐴 ≔ HomA(𝐶𝑛, 𝐴).

Definition 1.7 The Čech complex �̌�•(U, 𝐹) of a presheaf of abelian groups 𝐹 with
respect to a family of maps U= {𝑈𝑖 → 𝑋}𝑖∈𝐼 is defined as

�̌�•(U, 𝐹) ≔ HomAb(P)(𝑁•(U), 𝐹),

a cochain complex in Ab obtained by applying Construction 1.6 to 𝑁•(U). The
𝑛th term of the Čech complex is

�̌�𝑛(U, 𝐹) = HomAb(P)(⨁
𝑖∈𝐼𝑛+1

Z[y𝑈𝑖
], 𝐹) ≅ ∏

𝑖∈𝐼𝑛+1
𝐹(𝑈𝑖).

We write ̌𝜕 for the differential in the Čech complex. The 𝑛th cohomology of the
Čech complex �̌�•(U, 𝐹) is the 𝑛th Čech cohomology of 𝐹 with respect to U and
denoted �̌�𝑛(U, 𝐹).

Remark 1.8 In the case of (pre)sheaves on topological spaces, there is amore efficient
description of the Čech complex: instead of indexing it by all (𝑛 + 1)-tuples of the
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indexing set 𝐼, we can put a partial order on 𝐼 and index by increasing sequences
𝑖0 < 𝑖1 < ⋯ < 𝑖𝑛 of elements in 𝐼. We write �̌�•

ord(U, 𝐹) for this ordered variant. If 𝐼
is finite, then the ordered Čech complex will vanish in degrees 𝑛 ⩾ #𝐼, and so does
the cohomology. One can show that the ordered Čech complex is chain homotopy
equivalent to the ‘full’ Čech complex, so they compute the same cohomology [Con].
This works for the site of open subsets of a topological space, but fails for general
Grothendieck topologies.4

Remark 1.9 In degree zero, we have

�̌�0(U, 𝐹) = ker ̌𝜕0 = ker(𝑑0 − 𝑑1)

= eq(∏
𝑖∈𝐼

𝐹(𝑈𝑖) ⇉ ∏
𝑖,𝑗∈𝐼

𝐹(𝑈𝑖,𝑗))

≅ HomP( Û, 𝐹),

where Û is the sieve generated by U. Thus, if 𝐹 satisfies the sheaf axiom for U, we
have

�̌�0(U, 𝐹) ≅ HomP( Û, 𝐹) ≅ HomP(y𝑋, 𝐹) ≅ 𝐹(𝑋).
Here the second isomorphism is the sheaf axiom and the third is the Yoneda
lemma.

Proposition 1.10 The 𝑛th Čech cohomology �̌�𝑛(U, −) with respect to U is the 𝑛th right
derived functor of �̌�0(U, −) ∶ Ab(P) → Ab.

Remark 1.11 This statement is not true for the category of sheaves E: the right
derived functors of the composite �̌�0(U, 𝑖∗(−)) ∶ Ab(E) → Ab do not coincide in
general with the composite �̌�𝑛(U, 𝑖∗(−)). The obstruction is that 𝑖∗ might not be
exact. In fact, the composite �̌�0(U, 𝑖∗(−)) is the functor Γ(𝑋, −) ≔ HomP(y𝑋, 𝑖∗(−))
(cf. Remark 1.9), whose right derived functors are ordinary sheaf cohomology.

Proof (of Proposition 1.10) The complex 𝑁•(U) consists of coproducts of representa-
bles, which are projective aswe saw lastweek. Since the hom-functorHomAb(P)(𝑃, −)
is exact if 𝑃 is projective, the functor 𝐹 ↦ �̌�•(U, 𝐹) = HomAb(P)(𝑁•(U), 𝐹), assign-
ing to an abelian presheaf the associated Čech complex, is exact. Hence, the
functors �̌�𝑛(U, −) form a 𝛿-functor. Moreover, if 𝐼 is an injective presheaf, then
HomAb(P)(−, 𝐼) is exact, so the Čech complex �̌�•(U, 𝐼) is exact in positive degrees
by Lemma 1.5, and thus the cohomology �̌�𝑛(U, 𝐼) vanishes for 𝑛 > 0. The result
now follows from the universal property of derived functors, stated last week.

The following result provides a criterion for a covering family U on an object
𝑋 making Čech cohomology of U compute sheaf cohomology of 𝑋.

Proposition 1.12 Let U= {𝑈𝑖 ↪ 𝑋}𝑖∈𝐼 be covering family of an object 𝑋 in a site (C, 𝐽)
and let Fbe a sheaf of abelian groups on (C, 𝐽). If 𝐻𝑛(𝑈𝑖,F) = 0 for all 𝑛 > 0 and
𝑖 ∈ 𝐼𝑚+1, then there is an isomorphism

�̌�𝑛(U,F) ≅ 𝐻𝑛(𝑋,F)

between Čech cohomology and sheaf cohomology for all 𝑛 ⩾ 0.
4See https://mathoverflow.net/questions/10056/equivalence-of-ordered-and-unordered-cech-cohomology.
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The first homework exercise is to prove this result.

2 Čech cohomology of sites

We now discuss the functoriality of �̌�𝑛(U, 𝐹) in the family U. We will show that
the groups �̌�𝑛(−, 𝐹) form a diagram over the poset 𝐽(𝑋) of covering sieves of 𝑋,
and we will define the Čech cohomology of the object 𝑋 as the colimit of this
diagram. The idea is thus to look at finer and finer covers of 𝑋; it turns out that
this computes ordinary sheaf cohomology in low degrees, and in all degrees under
some more assumptions.

Definition 2.1 Let U = {𝑈𝑖 → 𝑋}𝑖∈𝐼 and V = {𝑉𝑗 → 𝑋}𝑗∈𝐽 be two families of maps
in Cwith codomain 𝑋. A refinement map 𝑟 ∶ V→ U is a function 𝑟 ∶ 𝐽 → 𝐼 with
factorisations

𝑉𝑗 𝑈𝑟(𝑗)

𝑋

𝑟𝑗

for all 𝑗 ∈ 𝐽.
For 𝑗 ∈ 𝐽𝑛+1, a refinement map 𝑟 ∶ V→ U induces a map 𝑟𝑗 ∶ 𝑉𝑗 → 𝑈𝑟(𝑗) over 𝑋;

thus 𝑟 induces a chain map 𝑁•(𝑟) ∶ 𝑁•(V) → 𝑁•(U).

The following lemma tells us that, up to chain homotopy, all refining maps
induce the same chain map.

Lemma 2.2 Let U = {𝑈𝑖 → 𝑋}𝑖∈𝑖 and V= {𝑉𝑗 → 𝑋}𝑗∈𝐽 be two families of maps in C

with codomain 𝑋, and let 𝑟, 𝑠 ∶ V→ U be two refinement maps. Then the chain maps
𝑁•(𝑟) and 𝑁•(𝑠) are chain homotopic.

Proof For 𝑗 ∈ 𝐽𝑛+1 and 𝑘 ∈ [𝑛], define a map 𝑡𝑘𝑗 over 𝑋 as

𝑡𝑘𝑗 ≔ (𝑟𝑗0,… , 𝑟𝑗𝑘, 𝑠𝑗𝑘,… , 𝑠𝑗𝑛) ∶ 𝑉𝑗 → 𝑈(𝑟(𝑗0),…,𝑟(𝑗𝑘),𝑠(𝑗𝑘),…,𝑠(𝑗𝑛)).

Let 𝑡𝑘𝑛 ∶ 𝑁𝑛(V) → 𝑁𝑛+1(U) be the direct sum over 𝑗 ∈ 𝐽𝑛+1 of themaps induced by 𝑡𝑘𝑗 .
One can now check that the alternating sums ∑𝑛

𝑘=0(−1)
𝑘𝑡𝑘𝑛 form a chain homotopy

from 𝑁•(𝑟) to 𝑁•(𝑠) (and this is tedious combinatorics).

Corollary 2.3 Let U = {𝑈𝑖 → 𝑋}𝑖∈𝑖 be a family of maps in Cwith codomain 𝑋 and
let Û ⊆ y𝑋 denote the sieve generated by U. Then there is a canonical isomorphism
�̌�𝑛(U, 𝐹) ≅ �̌�𝑛( Û, 𝐹) for every presheaf of abelian groups 𝐹.

Proof By definition, every morphism in Û factors through one of the maps𝑈𝑖 → 𝑋,
so there is a refinement map Û→ U. On the other hand, the inclusion map defines
a refinement map U→ Û. By Lemma 2.2, there is a chain homotopy equivalence
between 𝑁•(U) and 𝑁•( Û), and hence between �̌�•(U, 𝐹) and �̌�•( Û, 𝐹), and thus
their cohomology groups �̌�𝑛(U, 𝐹) and �̌�𝑛( Û, 𝐹) are isomorphic. Moreover, any
room for choice of refinement map Û→ U gets killed in the process by the fact
that the resulting cochain maps are homotopic: by Exercise 1 of Homework 6, they
then induce the same map on cohomology.
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We will now restrict to the case where U is a 𝐽-covering sieve. By Corollary 2.3,
however, we may replace a covering sieve by a family generating it to compute
Čech cohomology, which could be easier (the second homework exercise should
convince you of this). If 𝑅 and 𝑆 are any sieves on an object 𝑋 of C, there exists a
refinement map 𝑅 → 𝑆 if and only if 𝑅 ⊆ 𝑆. Therefore, the 𝑁•(U) form a diagram
over U ∈ 𝐽(𝑋), seen as a poset ordered by inclusion; thus, �̌�•(U, 𝐴) and �̌�𝑛(U, 𝐴)
form diagrams over U ∈ 𝐽(𝑋)op.

Definition 2.4 Let 𝑋 be an object of C and let 𝐹 be presheaf of abelian groups on
C. Then the 𝑛th Čech cohomology �̌�𝑛(𝑋, 𝐹) of 𝑋 with values in 𝐹 is the (filtered)
colimit

�̌�𝑛(𝑋, 𝐹) ≔ colim
U∈𝐽(𝑋)op

�̌�𝑛(U, 𝐹).

Remark 2.5 Since �̌�0(U, 𝐹) = HomP(U, 𝐹) by Remark 1.9, it follows from the defi-
nition that �̌�0(𝑋, −) recovers the ‘half-sheafification’ functor (−)+ from Lecture 2.

Remark 2.6 Since filtered colimits are exact, the functors �̌�𝑛(𝑋, −) ∶ Ab(P) → Ab
form a 𝛿-functor, and they vanish on injectives in positive degrees since the
�̌�𝑛(U, −) do (as we saw in the proof of Proposition 1.10). Thus, by the univer-
sal property of right derived functors, we have

�̌�𝑛(𝑋, −) ≅ R𝑛�̌�0(𝑋, −).

We are mostly interested in Čech cohomology of sheaves; however, the func-
tors �̌�𝑛(𝑋, −) do not form a 𝛿-functor Ab(E) → Ab since 𝑖∗ might not be exact
(see Remark 1.11).

3 Čech cohomology and sheaf cohomology

We have now defined a notion of cohomology, which we can apply to sheaves.
One might naturally wonder how this notion compares to the notion of sheaf
cohomology we defined in earlier lectures: although the constructions involved are
maybe not immediately completely transparent, we can compute Čech cohomology
as the cohomology of some explicitly defined complex. We will see that Čech
cohomology always agrees with sheaf cohomology in degrees zero and one. In
higher degrees this fails in general (even for sheaves on topological spaces). There
are, however, some assumptions that are satisfied by many examples of interest
under which Čech cohomology and sheaf cohomology will agree in all degrees;
for instance, we will prove that they agree for sheaves on paracompact Hausdorff
topological spaces.

The following theorem relates Čech cohomology and sheaf cohomologywithout
any additional assumptions on the site or sheaf: they agree in degrees zero and
one, but might not in higher degrees.

Theorem 3.1 ([Joh77, Theorem 8.27]) Let 𝑋 be an object of C and let Fbe a sheaf of
abelian groups on a site (C, 𝐽). Then there is a map

�̌�𝑛(𝑋,F) → 𝐻𝑛(𝑋,F)

which is an isomorphism for 𝑛 = 0, 1 and a monomorphism for 𝑛 = 2.
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The proof uses some more technology than we have introduced: either the
Grothendieck spectral sequence (a special case of which we will use, cf. Proposi-
tion 4.2) or a close inspection of a double complex.

We state without proof the following result, due to Cartan, providing a criterion
for Čech cohomology and sheaf cohomology to agree in all degrees.

Proposition 3.2 ([Joh77, Proposition 8.28]) Let Fbe a sheaf of abelian groups on (C, 𝐽)
and suppose there is a set 𝐾 of objects of Cwith the following properties:

1© for every 𝑉 ∈ 𝐾, we have �̌�𝑛(𝑉,F) = 0 for 𝑛 > 0;

2© for every 𝑈 ∈ C, there is a covering family {𝑉𝑖 → 𝑈}𝑖∈𝐼 of 𝑈 with 𝑉𝑖 ∈ 𝐾 for all
𝑖 ∈ 𝐼;

3© for all 𝑉,𝑊 ∈ 𝐾, the pullback 𝑉 ×𝑈 𝑊 is an element of 𝐾.

Then the map �̌�𝑛(𝑋,F) → 𝐻𝑛(𝑋,F) of Theorem 3.1 is an isomorphism for all 𝑛 ⩾ 0
and all 𝑋 ∈ C.

4 Čech cohomology and sheaf cohomology for paracompact Haus-
dorff spaces

The next theorem relates Čech cohomology and sheaf cohomology in all degrees,
but only for sheaves on topological spaces that are assumed to be paracompact
Hausdorff.

Theorem 4.1 Let 𝑋 be a paracompact Hausdorff topological space. Then for every sheaf
of abelian groups Fon 𝑋 there is an isomorphism

�̌�𝑛(𝑋,F) ≅ 𝐻𝑛(𝑋,F)

between Čech cohomology and sheaf cohomology in all degrees 𝑛 ⩾ 0.

The proof will depend crucially on an edge case of the Grothendieck spectral
sequence, relating R𝑛𝐺 ∘ R𝑚𝐹 to R𝑚+𝑛(𝐺𝐹). This can be proven ‘by hand’ using
techniques that have been discussed before (splicing up an injective resolution,
looking at the correct long exact sequences).

Proposition 4.2 Let 𝐹 ∶ A→ B and 𝐺 ∶ B→ C be left exact functors between abelian
categories, where Aand B are assumed to have enough injectives and 𝐹 sends injective
objects to 𝐺-acyclic objects.

1© If 𝑋 ∈ A satisfies R𝑛𝐺(R𝑚𝐹(𝑋)) = 0 for all 𝑚 ⩾ 0 and 𝑛 > 0, then

R𝑛(𝐺𝐹)(𝑋) ≅ 𝐺(R𝑛𝐹(𝑋))

for all 𝑛 ⩾ 0.

2© If 𝑋 ∈ A satisfies R𝑛𝐺(R𝑚𝐹(𝑋)) = 0 for all 𝑚 > 0 and 𝑛 ⩾ 0, then

R𝑛(𝐺𝐹)(𝑋) ≅ R𝑛𝐺(𝐹(𝑋))

for all 𝑛 ⩾ 0.
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Lemma 4.3 If 𝐹 is a presheaf of abelian groups on a paracompact Hausdorff space 𝑋
with vanishing sheafification 𝑖∗𝐹 = 0,5 then �̌�𝑛(𝑋, 𝐹) = 0 for all 𝑛 ⩾ 0.

The proof is point-set topology: here you have to use the assumptions on the
topological space. An outline of the proof can be found in [Joh77, Exercise 8.9].

Lemma 4.4 Let H𝑛 denote the 𝑛th right derived functor of 𝑖∗ ∶ Ab(E) → Ab(P). Then
𝑖∗H𝑛(F) = 0 for all 𝑛 > 0 and F∈ Ab(E).

Proof Consider the functors

Ab(E)
𝑖∗−→ Ab(P) 𝑖∗−→ Ab(E).

The former is left exact and the latter is exact; their composite is (equivalent to)
the identity, which is exact. It follows that these functors satisfy the hypotheses of
part 1© of Proposition 4.2, and we find

𝑖∗H𝑛(F) = 𝑖∗(R𝑛𝑖∗(F)) ≅ R𝑛(𝑖∗𝑖∗)(F) = R𝑛id(F),

which vanishes for 𝑛 > 0 by exactness of the identity.

Proof (of Theorem 4.1) Consider the left exact functors

Ab(Sh(𝑋))
𝑖∗−→ Ab(PSh(𝑋))

�̌�0(𝑋,−)
−−−−−−→ Ab.

Their composite is the global sections functor𝐻0(𝑋, −) = Γ(𝑋, −) (this follows from
Remark 2.5). We have 𝑖∗H𝑚(F) = 0 for all 𝑚 > 0 by Lemma 4.4, so we see

�̌�𝑛(𝑋,H𝑚(F)) = 0

for all 𝑚 > 0 and 𝑛 ⩾ 0 by Lemma 4.3. By part 2© of Proposition 4.2, we conclude

𝐻𝑛(𝑋,F) = R𝑛𝐻0(𝑋, −)(F) = R𝑛(�̌�0(𝑋, −) ∘ 𝑖∗)(F) ≅ R𝑛�̌�0(𝑋, −)(F) ≅ �̌�𝑛(𝑋,F),

using the fact that �̌�𝑛(𝑋, −) is the 𝑛th right derived functor of �̌�0(𝑋, −) (Remark 2.6)
and that 𝑖∗ preserves injectives (which is part of the homework).

5Equivalently, we may require that all stalks of 𝐹 vanish.
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Homework exercises

Exercise 10.1 Let U= {𝑈𝑖 ↪ 𝑋}𝑖∈𝐼 be a covering family of an object 𝑋 in a site (C, 𝐽)
and let Fbe a sheaf of abelian groups on (C, 𝐽). Assume that 𝐻𝑛(𝑈𝑖,F) = 0 for all
𝑛 > 0 and 𝑖 ∈ 𝐼𝑚+1. As before, write E= Sh(C, 𝐽) and P = PSh(C).

1© Show the following statement: if Aand B are abelian categories and if

A B
𝐹

𝑈

⊣

is an adjunction where 𝐹 is exact, then 𝑈 preserves injective objects. Deduce
that 𝑖∗ ∶ Ab(E) → Ab(P) preserves injective objects.

2© Let H𝑚 ∶ Ab(E) → Ab(P) denote the 𝑚th right derived functor of 𝑖∗. Show
that for any sheaf G∈ Ab(E), the presheaf H𝑚(G) is given by 𝑈 ↦ 𝐻𝑚(𝑈, G).
Hint: Use Proposition 4.2.

3© Show that �̌�𝑛(U,H𝑚(F)) = 0 for all 𝑚 > 0 and 𝑛 ⩾ 0.

4© Conclude that there is an isomorphism �̌�𝑛(U,F) ≅ 𝐻𝑛(𝑋,F) between Čech
cohomology and sheaf cohomology in all degrees 𝑛 ⩾ 0.
Hint: Use Remark 1.9 and Proposition 4.2.

Exercise 10.2 Use Čech cohomology to compute the sheaf cohomology 𝐻𝑛(𝑆1,Z) of
the circle 𝑆1 with coefficients in the constant sheaf Z for all 𝑛 ⩾ 0. You may use
without proof the following fact, which is a weak version of homotopy invariance
of sheaf cohomology: if an open subset 𝑈 ⊆ 𝑆1 is a disjoint union of contractibles,
then 𝐻𝑛(𝑈,Z) = 0 for all 𝑛 > 0.

Hint: Use the first exercise, Remark 1.8, Corollary 2.3, and the fact that Z(𝑈) ≅
HomTop(𝑈,Z) is the set of continuous maps 𝑈 → Z, where the codomain is
equipped with the discrete topology.
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